Skip to main content

The Datadog Python library

Project description

The Datadog Python library

Unit Tests Integration Tests Documentation Status PyPI - Version PyPI - Downloads

The Datadog Python Library is a collection of tools suitable for inclusion in existing Python projects or for the development of standalone scripts. It provides an abstraction on top of Datadog's raw HTTP interface and the Agent's DogStatsD metrics aggregation server, to interact with Datadog and efficiently report events and metrics.

See CHANGELOG.md for changes.

Installation

To install from pip:

pip install datadog

To install from source:

python setup.py install

Datadog API

To support all Datadog HTTP APIs, a generated library is available which will expose all the endpoints: datadog-api-client-python.

Find below a working example for submitting an event to your Event Stream:

from datadog import initialize, api

options = {
    "api_key": "<YOUR_API_KEY>",
    "app_key": "<YOUR_APP_KEY>",
}

initialize(**options)

title = "Something big happened!"
text = "And let me tell you all about it here!"
tags = ["version:1", "application:web"]

api.Event.create(title=title, text=text, tags=tags)

Consult the full list of supported Datadog API endpoints with working code examples in the Datadog API documentation.

Note: The full list of available Datadog API endpoints is also available in the Datadog Python Library documentation

Environment Variables

As an alternate method to using the initialize function with the options parameters, set the environment variables DATADOG_API_KEY and DATADOG_APP_KEY within the context of your application.

If DATADOG_API_KEY or DATADOG_APP_KEY are not set, the library attempts to fall back to Datadog's APM environment variable prefixes: DD_API_KEY and DD_APP_KEY.

from datadog import initialize, api

# Assuming you've set `DD_API_KEY` and `DD_APP_KEY` in your env,
# initialize() will pick it up automatically
initialize()

title = "Something big happened!"
text = "And let me tell you all about it here!"
tags = ["version:1", "application:web"]

api.Event.create(title=title, text=text, tags=tags)

In development, you can disable any statsd metric collection using DD_DOGSTATSD_DISABLE=True (or any not-empty value).

DogStatsD

In order to use DogStatsD metrics, the Agent must be running and available.

Instantiate the DogStatsD client with UDP

Once the Datadog Python Library is installed, instantiate the StatsD client using UDP in your code:

from datadog import initialize, statsd

options = {
    "statsd_host": "127.0.0.1",
    "statsd_port": 8125,
}

initialize(**options)

See the full list of available DogStatsD client instantiation parameters.

Instantiate the DogStatsd client with UDS

Once the Datadog Python Library is installed, instantiate the StatsD client using UDS in your code:

from datadog import initialize, statsd

options = {
    "statsd_socket_path": PATH_TO_SOCKET,
}

initialize(**options)

Origin detection over UDP and UDS

Origin detection is a method to detect which pod DogStatsD packets are coming from in order to add the pod's tags to the tag list. The DogStatsD client attaches an internal tag, entity_id. The value of this tag is the content of the DD_ENTITY_ID environment variable if found, which is the pod's UID. The Datadog Agent uses this tag to add container tags to the metrics. To avoid overwriting this global tag, make sure to only append to the constant_tags list.

To enable origin detection over UDP, add the following lines to your application manifest

env:
  - name: DD_ENTITY_ID
    valueFrom:
      fieldRef:
        fieldPath: metadata.uid

Usage

Metrics

After the client is created, you can start sending custom metrics to Datadog. See the dedicated Metric Submission: DogStatsD documentation to see how to submit all supported metric types to Datadog with working code examples:

Some options are supported when submitting metrics, like applying a Sample Rate to your metrics or tagging your metrics with your custom tags.

Events

After the client is created, you can start sending events to your Datadog Event Stream. See the dedicated Event Submission: DogStatsD documentation to see how to submit an event to your Datadog Event Stream.

Service Checks

After the client is created, you can start sending Service Checks to Datadog. See the dedicated Service Check Submission: DogStatsD documentation to see how to submit a Service Check to Datadog.

Monitoring this client

This client automatically injects telemetry about itself in the DogStatsD stream. Those metrics will not be counted as custom and will not be billed. This feature can be disabled using the statsd.disable_telemetry() method.

See Telemetry documentation to learn more about it.

Benchmarks

Note: You will need to install psutil package before running the benchmarks.

If you would like to get an approximate idea on the throughput that your DogStatsD library can handle on your system, you can run the included local benchmark code:

$ # Python 2 Example
$ python2 -m unittest -vvv tests.performance.test_statsd_throughput

$ # Python 3 Example
$ python3 -m unittest -vvv tests.performance.test_statsd_throughput

You can also add set BENCHMARK_* to customize the runs:

$ # Example #1
$ BENCHMARK_NUM_RUNS=10 BENCHMARK_NUM_THREADS=1 BENCHMARK_NUM_DATAPOINTS=5000 BENCHMARK_TRANSPORT="UDP" python2 -m unittest -vvv tests.performance.test_statsd_throughput

$ # Example #2
$ BENCHMARK_NUM_THREADS=10 BENCHMARK_TRANSPORT="UDS" python3 -m unittest -vvv tests.performance.test_statsd_throughput

Maximum packets size in high-throughput scenarios

In order to have the most efficient use of this library in high-throughput scenarios, default values for the maximum packets size have already been set for both UDS (8192 bytes) and UDP (1432 bytes) in order to have the best usage of the underlying network. However, if you perfectly know your network and you know that a different value for the maximum packets size should be used, you can set it with the parameter max_buffer_len. Example:

from datadog import initialize

options = {
    "api_key": "<YOUR_API_KEY>",
    "app_key": "<YOUR_APP_KEY>",
    "max_buffer_len": 4096,
}

initialize(**options)

Thread Safety

DogStatsD and ThreadStats are thread-safe.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datadog-0.46.0.tar.gz (340.7 kB view details)

Uploaded Source

Built Distribution

datadog-0.46.0-py2.py3-none-any.whl (113.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file datadog-0.46.0.tar.gz.

File metadata

  • Download URL: datadog-0.46.0.tar.gz
  • Upload date:
  • Size: 340.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for datadog-0.46.0.tar.gz
Algorithm Hash digest
SHA256 e4fbc92a85e2b0919a226896ae45fc5e4b356c0c57f1c2659659dfbe0789c674
MD5 9aa520afe9bd9d24e469e0da66574bda
BLAKE2b-256 f97ac7f1fbb65a5a20e534b84f097842041c023aeb638493af52e1c2331fd24d

See more details on using hashes here.

File details

Details for the file datadog-0.46.0-py2.py3-none-any.whl.

File metadata

  • Download URL: datadog-0.46.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 113.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for datadog-0.46.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3d7bcda6177b43be4cdb52e16b4bdd4f9005716c0dd7cfea009e018c36bb7a3d
MD5 027ecaddf52b066a18b0404ea94f8ff3
BLAKE2b-256 b8a56d5f09e4464b06bd32b405bbb9c460ad8db20eafcf28ac24c3e34931cdf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page