Skip to main content

File-based ORM for dataclasses.

Project description

Datafiles: A file-based ORM for dataclasses

Datafiles is a bidirectional serialization library for Python dataclasses to synchronizes objects to the filesystem using type annotations. It supports a variety of file formats with round-trip preservation of formatting and comments, where possible. Object changes are automatically saved to disk and only include the minimum data needed to restore each object.

Travis CI AppVeyor Coveralls PyPI License PyPI Version Gitter

Popular use cases include:

  • Coercing user-editable files into the proper Python types
  • Storing program configuration and data in version control
  • Loading data fixtures for demonstration or testing purposes
  • Prototyping data models agnostic of persistence backends

Overview

Take an existing dataclass such as this example from the documentation:

from dataclasses import dataclass

@dataclass
class InventoryItem:
    """Class for keeping track of an item in inventory."""

    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand

and decorate it with a directory pattern to synchronize instances:

from datafiles import datafile

@datafile("inventory/items/{self.name}.yml")
@dataclass
class InventoryItem:
    ...

Then, work with instances of the class as normal:

>>> item = InventoryItem("widget", 3)
# inventory/items/widget.yml

unit_price: 3.0

Changes to the object are automatically saved to the filesystem:

>>> item.quantity_on_hand += 100
# inventory/items/widget.yml

unit_price: 3.0
quantity_on_hand: 100

Changes to the filesystem are automatically reflected in the object:

# inventory/items/widget.yml

unit_price: 2.5  # <= manually changed from "3.0"
quantity_on_hand: 100
>>> item.unit_price
2.5

Objects can also be restored from the filesystem:

>>> from datafiles import Missing
>>> item = InventoryItem("widget", Missing)
>>> item.unit_price
2.5
>>> item.quantity_on_hand
100

Demo: Jupyter Notebook

Installation

Because datafiles relies on dataclasses and type annotations, Python 3.7+ is required. Install this library directly into an activated virtual environment:

$ pip install datafiles

or add it to your Poetry project:

$ poetry add datafiles

Documentation

To see additional synchronization and formatting options, please consult the full documentation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datafiles-0.7b1.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

datafiles-0.7b1-py3-none-any.whl (25.4 kB view details)

Uploaded Python 3

File details

Details for the file datafiles-0.7b1.tar.gz.

File metadata

  • Download URL: datafiles-0.7b1.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.7.2 Darwin/19.2.0

File hashes

Hashes for datafiles-0.7b1.tar.gz
Algorithm Hash digest
SHA256 55384d9fa0df6ab7cbc61a139afc0e1817b0c57d1f9aa8131b75a67d413d5135
MD5 8abebe05df040805baffc72425da5f7c
BLAKE2b-256 ff527cfbedd2d3a6bc17c8eab1a1c67e6af0b1bac00cd1cd6ed4f8f123ced482

See more details on using hashes here.

File details

Details for the file datafiles-0.7b1-py3-none-any.whl.

File metadata

  • Download URL: datafiles-0.7b1-py3-none-any.whl
  • Upload date:
  • Size: 25.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.7.2 Darwin/19.2.0

File hashes

Hashes for datafiles-0.7b1-py3-none-any.whl
Algorithm Hash digest
SHA256 6da2fedcb4668232d9b62259bced0123ccff743bf53fa6944bea09a2dcb62acd
MD5 d5d5b14d9cb916e823be4480254610f8
BLAKE2b-256 8ee75989a0c3132ec8ab8f403d5ffffc920a634d05aeccb44f9b280c6c3b6aba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page