A resource normalizer for dataflows
Project description
# Dataflows Resource write to db normalized
This library provides some dataflows processing for normalizing a resource.
It has special support for storing normalized data into DB tables.
## What is normalization?
In short, it is the process of reducing duplication in a dataset.
More can be read about this concept [here](https://en.wikipedia.org/wiki/Database_normalization).
## Example
Let's take, as an example, this world cities dataset (we shall call it the *fact* resource):
```python
from dataflows import Flow, load, printer
Flow(
load('https://datahub.io/core/world-cities/r/world-cities.csv', name='cities'),
printer(num_rows=1)
).process()
```
*cities:*
|# |name |country |subcountry |geonameid
|-----|----------------|----------|------------------|-----------
|1 |les Escaldes |Andorra |Escaldes-Engordany |3040051
|2 |Andorra la Vella|Andorra |Andorra la Vella |3041563
|...
|23018|**Chitungwiza** |**Zimbabwe** |**Harare** |1106542
It seems that the `country` and `subcountry` columns are quite repetitive - let's extract them into a separate, deduplicated resource (we will call that a *dimension* resource).
To do that we use the `normalize` processor.
This processor receives a single resource name, and a list of `NormGroup` instances. Each of these groups specifies one new *dimension* resource to be extracted and deduplicated.
Let's see it in action:
```python
from dataflows_normalize import normalize, NormGroup
Flow(
load('https://datahub.io/core/world-cities/r/world-cities.csv', name='cities'),
normalize([
NormGroup(['country', 'subcountry'], 'country_id', 'id')
], resource='cities'),
printer()
).process()
```
*cities:*
|# |name |geonameid |country_id
|-----|-----------------|-----------|------------
|1 |les Escaldes |3040051 |0
|2 |Andorra la Vella |3041563 |1
|3 |Umm al Qaywayn |290594 |2
|4 |Ras al-Khaimah |291074 |3
|5 |Khawr Fakkān |291696 |4
|...
|23014|Bulawayo |894701 |2677
|23015|Bindura |895061 |2678
|23016|Beitbridge |895269 |2679
|23017|Epworth |1085510 |2676
|23018|**Chitungwiza** |1106542 |**2676**
*cities_country_id:*
|# |id|country |subcountry
|----|-----------|-------------------|----------------------
|1 |30|Afghanistan |Badakhshan
|2 |27|Afghanistan |Badghis
|3 |21|Afghanistan |Balkh
|4 |33|Afghanistan |Bāmīān
|5 |31|Afghanistan |Farah
|6 |19|Afghanistan |Faryab
|7 |28|Afghanistan |Ghaznī
|8 |13|Afghanistan |Ghowr
|9 |22|Afghanistan |Helmand
|10 |11|Afghanistan |Herat
|...
|2671 |2677|Zimbabwe |Bulawayo
|2672 |**2676**|**Zimbabwe** |**Harare**
|2673 |2673|Zimbabwe |Manicaland
|2674 |2678|Zimbabwe |Mashonaland Central
|2675 |2675|Zimbabwe |Mashonaland East
|2676 |2674|Zimbabwe |Mashonaland West
|2677 |2670|Zimbabwe |Masvingo
|2678 |2671|Zimbabwe |Matabeleland North
|2679 |2679|Zimbabwe |Matabeleland South
|2680 |2672|Zimbabwe |Midlands
If we follow the last line in the dataset (`Chitungwiza`), we can see that an entry for its region (`Zimbabwe/Harare`) was created with id `2676`, and that id was added to the original row instead of the original values.
**How much did we gain?**
The original CSV file has a size of 895,586 bytes.
If we save the two new resources as CSVs, we would get
542,299 bytes for the *fact* resource and 68,023 for the regions *dimension* resource - a total of 610,322 bytes (or a reduction of 31% in size).
Not only this helps with size, it also improves greatly DB performance to store data in normalized form.
## DB Normalization
Running similar code to above, only using `normalize_to_db` will do the following:
- Load existing values from database *dimension* tables (in case these tables exist)
- Normalize the input data, and split into *fact* and *dimension* resources
- Update the DB tables with new values, while reusing existing references
The main difference in usage from `normalize` is that the names of DB tables are provided.
```python
from dataflows_normalize import normalize_to_db, NormGroup
Flow(
load('https://datahub.io/core/world-cities/r/world-cities.csv', name='cities'),
normalize_to_db(
[
NormGroup(['country', 'subcountry'], 'country_id', 'id', db_table='countries_db_table')
],
'cities_db_table', 'cities',
db_connection_str='...'
),
).process()
```
This library provides some dataflows processing for normalizing a resource.
It has special support for storing normalized data into DB tables.
## What is normalization?
In short, it is the process of reducing duplication in a dataset.
More can be read about this concept [here](https://en.wikipedia.org/wiki/Database_normalization).
## Example
Let's take, as an example, this world cities dataset (we shall call it the *fact* resource):
```python
from dataflows import Flow, load, printer
Flow(
load('https://datahub.io/core/world-cities/r/world-cities.csv', name='cities'),
printer(num_rows=1)
).process()
```
*cities:*
|# |name |country |subcountry |geonameid
|-----|----------------|----------|------------------|-----------
|1 |les Escaldes |Andorra |Escaldes-Engordany |3040051
|2 |Andorra la Vella|Andorra |Andorra la Vella |3041563
|...
|23018|**Chitungwiza** |**Zimbabwe** |**Harare** |1106542
It seems that the `country` and `subcountry` columns are quite repetitive - let's extract them into a separate, deduplicated resource (we will call that a *dimension* resource).
To do that we use the `normalize` processor.
This processor receives a single resource name, and a list of `NormGroup` instances. Each of these groups specifies one new *dimension* resource to be extracted and deduplicated.
Let's see it in action:
```python
from dataflows_normalize import normalize, NormGroup
Flow(
load('https://datahub.io/core/world-cities/r/world-cities.csv', name='cities'),
normalize([
NormGroup(['country', 'subcountry'], 'country_id', 'id')
], resource='cities'),
printer()
).process()
```
*cities:*
|# |name |geonameid |country_id
|-----|-----------------|-----------|------------
|1 |les Escaldes |3040051 |0
|2 |Andorra la Vella |3041563 |1
|3 |Umm al Qaywayn |290594 |2
|4 |Ras al-Khaimah |291074 |3
|5 |Khawr Fakkān |291696 |4
|...
|23014|Bulawayo |894701 |2677
|23015|Bindura |895061 |2678
|23016|Beitbridge |895269 |2679
|23017|Epworth |1085510 |2676
|23018|**Chitungwiza** |1106542 |**2676**
*cities_country_id:*
|# |id|country |subcountry
|----|-----------|-------------------|----------------------
|1 |30|Afghanistan |Badakhshan
|2 |27|Afghanistan |Badghis
|3 |21|Afghanistan |Balkh
|4 |33|Afghanistan |Bāmīān
|5 |31|Afghanistan |Farah
|6 |19|Afghanistan |Faryab
|7 |28|Afghanistan |Ghaznī
|8 |13|Afghanistan |Ghowr
|9 |22|Afghanistan |Helmand
|10 |11|Afghanistan |Herat
|...
|2671 |2677|Zimbabwe |Bulawayo
|2672 |**2676**|**Zimbabwe** |**Harare**
|2673 |2673|Zimbabwe |Manicaland
|2674 |2678|Zimbabwe |Mashonaland Central
|2675 |2675|Zimbabwe |Mashonaland East
|2676 |2674|Zimbabwe |Mashonaland West
|2677 |2670|Zimbabwe |Masvingo
|2678 |2671|Zimbabwe |Matabeleland North
|2679 |2679|Zimbabwe |Matabeleland South
|2680 |2672|Zimbabwe |Midlands
If we follow the last line in the dataset (`Chitungwiza`), we can see that an entry for its region (`Zimbabwe/Harare`) was created with id `2676`, and that id was added to the original row instead of the original values.
**How much did we gain?**
The original CSV file has a size of 895,586 bytes.
If we save the two new resources as CSVs, we would get
542,299 bytes for the *fact* resource and 68,023 for the regions *dimension* resource - a total of 610,322 bytes (or a reduction of 31% in size).
Not only this helps with size, it also improves greatly DB performance to store data in normalized form.
## DB Normalization
Running similar code to above, only using `normalize_to_db` will do the following:
- Load existing values from database *dimension* tables (in case these tables exist)
- Normalize the input data, and split into *fact* and *dimension* resources
- Update the DB tables with new values, while reusing existing references
The main difference in usage from `normalize` is that the names of DB tables are provided.
```python
from dataflows_normalize import normalize_to_db, NormGroup
Flow(
load('https://datahub.io/core/world-cities/r/world-cities.csv', name='cities'),
normalize_to_db(
[
NormGroup(['country', 'subcountry'], 'country_id', 'id', db_table='countries_db_table')
],
'cities_db_table', 'cities',
db_connection_str='...'
),
).process()
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file dataflows-normalize-0.0.1.tar.gz
.
File metadata
- Download URL: dataflows-normalize-0.0.1.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f00bd30e24707cbffd801b0707ea05e5baf47b81181c1a04b41ad7c35f09691 |
|
MD5 | caa5d218e403af49cdaf9f68e0435647 |
|
BLAKE2b-256 | 0da383c5e57865a6461c24175e5617dcee537127f831c9f68a3af113b519a2e5 |