Skip to main content

A nifty data processing framework, based on data packages

Project description

# ![logo](logo-s.png) DataFlows

[![Travis](https://img.shields.io/travis/datahq/dataflows/master.svg)](https://travis-ci.org/datahq/dataflows)
[![Coveralls](http://img.shields.io/coveralls/datahq/dataflows.svg?branch=master)](https://coveralls.io/r/datahq/dataflows?branch=master)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/dataflows.svg)
[![Gitter chat](https://badges.gitter.im/dataflows-chat/Lobby.png)](https://gitter.im/dataflows-chat/Lobby)

DataFlows is a simple and intuitive way of building data processing flows.

- It's built for small-to-medium-data processing - data that fits on your hard drive, but is too big to load in Excel or as-is into Python, and not big enough to require spinning up a Hadoop cluster...
- It's built upon the foundation of the Frictionless Data project - which means that all data produced by these flows is easily reusable by others.
- It's a pattern not a heavy-weight framework: if you already have a bunch of download and extract scripts this will be a natural fit

Read more in the [Features section below][#features].

## QuickStart

Install `dataflows` via `pip install.`

Then use the command-line interface to bootstrap a basic processing script for any remote data file:

```bash

# Install from PyPi
$ pip install dataflows

# Inspect a remote CSV file
$ dataflows init https://raw.githubusercontent.com/datahq/dataflows/master/data/academy.csv
Writing processing code into academy_csv.py
Running academy_csv.py
academy:
# Year Ceremony Award Winner Name Film
(string) (integer) (string) (string) (string) (string)
---- ---------- ----------- -------------------------------- ---------- ------------------------------ -------------------
1 1927/1928 1 Actor Richard Barthelmess The Noose
2 1927/1928 1 Actor 1 Emil Jannings The Last Command
3 1927/1928 1 Actress Louise Dresser A Ship Comes In
4 1927/1928 1 Actress 1 Janet Gaynor 7th Heaven
5 1927/1928 1 Actress Gloria Swanson Sadie Thompson
6 1927/1928 1 Art Direction Rochus Gliese Sunrise
7 1927/1928 1 Art Direction 1 William Cameron Menzies The Dove; Tempest
...

# dataflows create a local package of the data and a reusable processing script which you can tinker with
$ tree
.
├── academy_csv
│   ├── academy.csv
│   └── datapackage.json
└── academy_csv.py

1 directory, 3 files

# Resulting 'Data Package' is super easy to use in Python
[adam] ~/code/budgetkey-apps/budgetkey-app-main-page/tmp (master=) $ python
Python 3.6.1 (default, Mar 27 2017, 00:25:54)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from datapackage import Package
>>> pkg = Package('academy_csv/datapackage.json')
>>> it = pkg.resources[0].iter(keyed=True)
>>> next(it)
{'Year': '1927/1928', 'Ceremony': 1, 'Award': 'Actor', 'Winner': None, 'Name': 'Richard Barthelmess', 'Film': 'The Noose'}
>>> next(it)
{'Year': '1927/1928', 'Ceremony': 1, 'Award': 'Actor', 'Winner': '1', 'Name': 'Emil Jannings', 'Film': 'The Last Command'}

# You now run `academy_csv.py` to repeat the process
# And obviously modify it to add data modification steps
```

## Features

* Trivial to get started and easy to scale up
* Set up and run from command line in seconds ...
* `dataflow init` => `flow.py`
* `python flow.py`
* Validate input (and esp source) quickly (non-zero length, right structure, etc.)
* Supports caching data from source and even between steps
* so that we can run and test quickly (retrieving is slow)
* Immediate test is run: and look at output ...
* Log, debug, rerun
* Degrades to simple python
* Conventions over configuration
* Log exceptions and / or terminate
* The input to each stage is a Data Package or Data Resource (not a previous task)
* Data package based and compatible
* Processors can be a function (or a class) processing row-by-row, resource-by-resource or a full package
* A pre-existing decent contrib library of Readers (Collectors) and Processors and Writers

## Learn more

Dive into the [Tutorial](TUTORIAL.md) to get a deeper glimpse into everything that `dataflows` can do.
Also review this list of [Built-in Processors](PROCESSORS.md), which also includes an API reference for each one of them.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataflows-0.0.47.tar.gz (29.5 kB view details)

Uploaded Source

Built Distribution

dataflows-0.0.47-py2.py3-none-any.whl (42.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dataflows-0.0.47.tar.gz.

File metadata

  • Download URL: dataflows-0.0.47.tar.gz
  • Upload date:
  • Size: 29.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.9.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for dataflows-0.0.47.tar.gz
Algorithm Hash digest
SHA256 50b3d72221a645a1f9e1b99141e6310c71fb27f447fd976ce9f11a76416c5671
MD5 99bcd11ff24b5d6308e4e1bc16a5522b
BLAKE2b-256 1b1cf6b05b4036a968c959bec10a8f2b115ef170dbafd9753ec47d857babf6e9

See more details on using hashes here.

Provenance

File details

Details for the file dataflows-0.0.47-py2.py3-none-any.whl.

File metadata

  • Download URL: dataflows-0.0.47-py2.py3-none-any.whl
  • Upload date:
  • Size: 42.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.9.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for dataflows-0.0.47-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1f3c01f39646b257eaa36178179c61636c3345c49eca0cb765d7dfde36c14032
MD5 b2fb6075e1bb210098e80bb095bc58c9
BLAKE2b-256 10977bb395b7a8c95e4bc120feac09f6dcb722f107d09e15a314cb6a5c598a83

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page