Skip to main content

Implementation of the DataFrame Standard for pandas and Polars

Project description

Build Status Coverage pre-commit.ci status

DataFrame API Compat

standard-compliant DataFrame

Implementation of the DataFrame Standard for pandas and polars.

What's this?

Please read our blog post! https://data-apis.org/blog/dataframe_standard_rfc/.

Documentation

Please check https://data-apis.org/dataframe-api/draft/API_specification/index.html for the methods supported by the Consortium Dataframe Standard.

How to try this out

Here's an example of how you can try this out:

import polars as pl

df = pl.DataFrame({'a': [1,2,3]})
df_std = df.__dataframe_consortium_standard__()

The object df_std is a Standard-compliant DataFrame. Check the API Specification for the full list of methods supported on it.

Here's an example of a dataframe-agnostic function:

from typing import Any


def my_dataframe_agnostic_function(df_non_standard: Any) -> Any:
    df = df_non_standard.__dataframe_consortium_standard__()
    xp = df.__dataframe_namespace__()

    for column_name in df.column_names:
        new_column = xp.col(column_name)
        new_column = (new_column - new_column.mean()) / new_column.std()
        df = df.assign(new_column.rename(f'{column_name}_scaled'))

    return df.dataframe

As long as you have this package installed, then either a pandas or Polars DataFrame should work with the code above, e.g.:

import pandas as pd
import polars as pl

df_pd = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df_pl = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})

my_dataframe_agnostic_function(df_pd)
my_dataframe_agnostic_function(df_pl)

Compliance with the Standard

This implementation adds some extra syntax and constructs which are not yet part of the Standard. Follow along with the discussion at https://github.com/data-apis/dataframe-api/pull/249.

Installation

pip install dataframe-api-compat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframe_api_compat-0.1.18.tar.gz (38.2 kB view details)

Uploaded Source

Built Distribution

dataframe_api_compat-0.1.18-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file dataframe_api_compat-0.1.18.tar.gz.

File metadata

  • Download URL: dataframe_api_compat-0.1.18.tar.gz
  • Upload date:
  • Size: 38.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dataframe_api_compat-0.1.18.tar.gz
Algorithm Hash digest
SHA256 e01840b666361c1130eb3abf9704240657463fee103a933a2acb9d2fd0a6a5a6
MD5 048cef91b138c9dab22ce172e66c3208
BLAKE2b-256 006629a84275b13f0da41c0ad94db61be656bac868e42fd7a5b27f2a910a1035

See more details on using hashes here.

File details

Details for the file dataframe_api_compat-0.1.18-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframe_api_compat-0.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 be50b4e41773bc3e429e8e60b84f445a3e4f98007bd3993ce2d46f92ce5afb61
MD5 9ee86b6de973c94cba832350390e9d6f
BLAKE2b-256 60ecf42e46a9cd16f3692f0c294b5ad9bc87fa70d701986b9842ba8be94f0e77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page