Skip to main content

Implementation of the DataFrame Standard for pandas and Polars

Project description

Build Status Coverage pre-commit.ci status

DataFrame API Compat

standard-compliant DataFrame

Implementation of the DataFrame Standard for pandas and polars.

What's this?

Please read our blog post! https://data-apis.org/blog/dataframe_standard_rfc/.

Documentation

Please check https://data-apis.org/dataframe-api/draft/API_specification/index.html for the methods supported by the Consortium Dataframe Standard.

How to try this out

Here's an example of how you can try this out:

import polars as pl

df = pl.DataFrame({'a': [1,2,3]})
df_std = df.__dataframe_consortium_standard__()

The object df_std is a Standard-compliant DataFrame. Check the API Specification for the full list of methods supported on it.

Here's an example of a dataframe-agnostic function:

from typing import Any


def my_dataframe_agnostic_function(df_non_standard: Any) -> Any:
    df = df_non_standard.__dataframe_consortium_standard__()
    xp = df.__dataframe_namespace__()

    for column_name in df.column_names:
        new_column = xp.col(column_name)
        new_column = (new_column - new_column.mean()) / new_column.std()
        df = df.assign(new_column.rename(f'{column_name}_scaled'))

    return df.dataframe

As long as you have this package installed, then either a pandas or Polars DataFrame should work with the code above, e.g.:

import pandas as pd
import polars as pl

df_pd = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df_pl = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})

my_dataframe_agnostic_function(df_pd)
my_dataframe_agnostic_function(df_pl)

Compliance with the Standard

This implementation adds some extra syntax and constructs which are not yet part of the Standard. Follow along with the discussion at https://github.com/data-apis/dataframe-api/pull/249.

Installation

pip install dataframe-api-compat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframe_api_compat-0.1.19.tar.gz (38.3 kB view details)

Uploaded Source

Built Distribution

dataframe_api_compat-0.1.19-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file dataframe_api_compat-0.1.19.tar.gz.

File metadata

  • Download URL: dataframe_api_compat-0.1.19.tar.gz
  • Upload date:
  • Size: 38.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dataframe_api_compat-0.1.19.tar.gz
Algorithm Hash digest
SHA256 cce000190c8bd94ac278694a473d424e76acc4fc6deec63e87856279e366edc1
MD5 a24844fc0016117b1fe21951ef6a23a8
BLAKE2b-256 fe8ca8e389ca9e829f8f48a225558788f8b904d05af94f24e9ce3ecc0eaefdf8

See more details on using hashes here.

File details

Details for the file dataframe_api_compat-0.1.19-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframe_api_compat-0.1.19-py3-none-any.whl
Algorithm Hash digest
SHA256 3d630c9ea014c6ecfbfdc0f09fc8685a0e39b7cb52570fd32446fd60ef6b0104
MD5 9d828b6ba8c86ea06e29348716f60487
BLAKE2b-256 4c919fb7c6d80258f5c783f683752e5390453debea39d2bf27b8ffe54d66222f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page