Skip to main content

Implementation of the DataFrame Standard for pandas and Polars

Project description

Build Status Coverage pre-commit.ci status

DataFrame API Compat

standard-compliant DataFrame

Implementation of the DataFrame Standard for pandas and polars.

What's this?

Please read our blog post! https://data-apis.org/blog/dataframe_standard_rfc/.

Documentation

Please check https://data-apis.org/dataframe-api/draft/API_specification/index.html for the methods supported by the Consortium Dataframe Standard.

How to try this out

Here's an example of how you can try this out:

import polars as pl

df = pl.DataFrame({'a': [1,2,3]})
df_std = df.__dataframe_consortium_standard__()

The object df_std is a Standard-compliant DataFrame. Check the API Specification for the full list of methods supported on it.

Here's an example of a dataframe-agnostic function:

from typing import Any


def my_dataframe_agnostic_function(df_non_standard: Any) -> Any:
    df = df_non_standard.__dataframe_consortium_standard__()
    xp = df.__dataframe_namespace__()

    for column_name in df.column_names:
        new_column = xp.col(column_name)
        new_column = (new_column - new_column.mean()) / new_column.std()
        df = df.assign(new_column.rename(f'{column_name}_scaled'))

    return df.dataframe

As long as you have this package installed, then either a pandas or Polars DataFrame should work with the code above, e.g.:

import pandas as pd
import polars as pl

df_pd = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df_pl = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})

my_dataframe_agnostic_function(df_pd)
my_dataframe_agnostic_function(df_pl)

Compliance with the Standard

This implementation adds some extra syntax and constructs which are not yet part of the Standard. Follow along with the discussion at https://github.com/data-apis/dataframe-api/pull/249.

Installation

pip install dataframe-api-compat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframe_api_compat-0.1.20.tar.gz (33.0 kB view details)

Uploaded Source

Built Distribution

dataframe_api_compat-0.1.20-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file dataframe_api_compat-0.1.20.tar.gz.

File metadata

  • Download URL: dataframe_api_compat-0.1.20.tar.gz
  • Upload date:
  • Size: 33.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dataframe_api_compat-0.1.20.tar.gz
Algorithm Hash digest
SHA256 17bd06b6cacd171c92c4a1ea2700c1be3f5cc64295a1f8db756cde3f80b68eaa
MD5 ae3db845d6dd36e0b8805735095fd8b6
BLAKE2b-256 30356ad2ea53c35d216f677656f3bdfe931321e514f59141d7cb61ba5e0d9c16

See more details on using hashes here.

Provenance

File details

Details for the file dataframe_api_compat-0.1.20-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframe_api_compat-0.1.20-py3-none-any.whl
Algorithm Hash digest
SHA256 b938a98afca92e98d2e0f30a2ed526d033be2f46860fdd760eb3a9c2ca7cf977
MD5 399b2e5f58da23f0784dd416e7f77fe7
BLAKE2b-256 0be068671559cbd5d22190a0b3680ab0f6df8d4f7d956b1125536eb5249e3c03

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page