Skip to main content

Implementation of the DataFrame Standard for pandas and Polars

Project description

Build Status Coverage pre-commit.ci status

DataFrame API Compat

standard-compliant DataFrame

Implementation of the DataFrame Standard for pandas and polars.

What's this?

Please read our blog post! https://data-apis.org/blog/dataframe_standard_rfc/.

Documentation

Please check https://data-apis.org/dataframe-api/draft/API_specification/index.html for the methods supported by the Consortium Dataframe Standard.

How to try this out

Here's an example of how you can try this out:

import polars as pl

df = pl.DataFrame({'a': [1,2,3]})
df_std = df.__dataframe_consortium_standard__()

The object df_std is a Standard-compliant DataFrame. Check the API Specification for the full list of methods supported on it.

Here's an example of a dataframe-agnostic function:

from typing import Any


def my_dataframe_agnostic_function(df_non_standard: Any) -> Any:
    df = df_non_standard.__dataframe_consortium_standard__()
    xp = df.__dataframe_namespace__()

    for column_name in df.column_names:
        new_column = xp.col(column_name)
        new_column = (new_column - new_column.mean()) / new_column.std()
        df = df.assign(new_column.rename(f'{column_name}_scaled'))

    return df.dataframe

As long as you have this package installed, then either a pandas or Polars DataFrame should work with the code above, e.g.:

import pandas as pd
import polars as pl

df_pd = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df_pl = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})

my_dataframe_agnostic_function(df_pd)
my_dataframe_agnostic_function(df_pl)

Compliance with the Standard

This implementation adds some extra syntax and constructs which are not yet part of the Standard. Follow along with the discussion at https://github.com/data-apis/dataframe-api/pull/249.

Installation

pip install dataframe-api-compat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframe_api_compat-0.1.21.tar.gz (34.1 kB view details)

Uploaded Source

Built Distribution

dataframe_api_compat-0.1.21-py3-none-any.whl (19.3 kB view details)

Uploaded Python 3

File details

Details for the file dataframe_api_compat-0.1.21.tar.gz.

File metadata

  • Download URL: dataframe_api_compat-0.1.21.tar.gz
  • Upload date:
  • Size: 34.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dataframe_api_compat-0.1.21.tar.gz
Algorithm Hash digest
SHA256 03f5fb6e11541b39d8296ddf1f77269a5327f1392ac92b0d5aaf3d6a38b35bbc
MD5 f19c8d4a4c6afe1647f6d821cb777d06
BLAKE2b-256 e8853c1948ce91db45499b7a2592c8e7569e80ebad3a6a1a744fc2411e9ae013

See more details on using hashes here.

File details

Details for the file dataframe_api_compat-0.1.21-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframe_api_compat-0.1.21-py3-none-any.whl
Algorithm Hash digest
SHA256 29798df6bb9bbdb9cb8438c4543c3b4eb01bcb397ad6cf0482e0dd1dba21f8e3
MD5 e0d1d925e434e073c6e6edf4d850a0a9
BLAKE2b-256 02b89537105976c2624a247311f42a0ec6205b74b68be516322ae184e5417249

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page