Skip to main content

Implementation of the DataFrame Standard for pandas and Polars

Project description

Build Status Coverage pre-commit.ci status

DataFrame API Compat

standard-compliant DataFrame

Implementation of the DataFrame Standard for pandas and polars.

What's this?

Please read our blog post! https://data-apis.org/blog/dataframe_standard_rfc/.

Documentation

Please check https://data-apis.org/dataframe-api/draft/API_specification/index.html for the methods supported by the Consortium Dataframe Standard.

How to try this out

Here's an example of how you can try this out:

import polars as pl

df = pl.DataFrame({'a': [1,2,3]})
df_std = df.__dataframe_consortium_standard__()

The object df_std is a Standard-compliant DataFrame. Check the API Specification for the full list of methods supported on it.

Here's an example of a dataframe-agnostic function:

from typing import Any


def my_dataframe_agnostic_function(df_non_standard: Any) -> Any:
    df = df_non_standard.__dataframe_consortium_standard__()

    for column_name in df.column_names:
        new_column = df.col(column_name)
        new_column = (new_column - new_column.mean()) / new_column.std()
        df = df.assign(new_column.rename(f'{column_name}_scaled'))

    return df.dataframe

As long as you have this package installed, then either a pandas or Polars DataFrame should work with the code above, e.g.:

import pandas as pd
import polars as pl

df_pd = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df_pl = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})

my_dataframe_agnostic_function(df_pd)
my_dataframe_agnostic_function(df_pl)

Compliance with the Standard

This implementation adds some extra syntax and constructs which are not yet part of the Standard. Follow along with the discussion at https://github.com/data-apis/dataframe-api/pull/249.

Installation

pip install dataframe-api-compat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframe_api_compat-0.1.22.tar.gz (35.1 kB view details)

Uploaded Source

Built Distribution

dataframe_api_compat-0.1.22-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file dataframe_api_compat-0.1.22.tar.gz.

File metadata

  • Download URL: dataframe_api_compat-0.1.22.tar.gz
  • Upload date:
  • Size: 35.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dataframe_api_compat-0.1.22.tar.gz
Algorithm Hash digest
SHA256 4009f6d4119e44a286dfa223642f970297194092d16d57486fdac06a9d23dd80
MD5 d9136e6023f356c6bc0f19c0f8a95ebb
BLAKE2b-256 50254a3e8e2310cee1cf8e499315285cd98c546064d41bf72bd6aea3354cac9c

See more details on using hashes here.

File details

Details for the file dataframe_api_compat-0.1.22-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframe_api_compat-0.1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 a0b685dea7f0a4db95336170babd1d9f66060230be5c563addad690a47a462de
MD5 9b4ea63cf2aeb019cdb5227093d538fc
BLAKE2b-256 06ef440f164d84d562e9519177afa1103c55e5dd590580cee1f40e6336079f71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page