Skip to main content

Implementation of the DataFrame Standard for pandas and Polars

Project description

Build Status Coverage pre-commit.ci status

DataFrame API Compat

standard-compliant DataFrame

Implementation of the DataFrame Standard for pandas and polars.

What's this?

Please read our blog post! https://data-apis.org/blog/dataframe_standard_rfc/.

Documentation

Please check https://data-apis.org/dataframe-api/draft/API_specification/index.html for the methods supported by the Consortium Dataframe Standard.

How to try this out

Here's an example of how you can try this out:

import polars as pl

df = pl.DataFrame({'a': [1,2,3]})
df_std = df.__dataframe_consortium_standard__()

The object df_std is a Standard-compliant DataFrame. Check the API Specification for the full list of methods supported on it.

Here's an example of a dataframe-agnostic function:

from typing import Any


def my_dataframe_agnostic_function(df_non_standard: Any) -> Any:
    df = df_non_standard.__dataframe_consortium_standard__()

    for column_name in df.column_names:
        new_column = df.col(column_name)
        new_column = (new_column - new_column.mean()) / new_column.std()
        df = df.assign(new_column.rename(f'{column_name}_scaled'))

    return df.dataframe

As long as you have this package installed, then either a pandas or Polars DataFrame should work with the code above, e.g.:

import pandas as pd
import polars as pl

df_pd = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df_pl = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})

my_dataframe_agnostic_function(df_pd)
my_dataframe_agnostic_function(df_pl)

Compliance with the Standard

The classes here also have an extra .persist method, which is not (yet) part of the Standard.

Installation

pip install dataframe-api-compat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframe_api_compat-0.1.26.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

dataframe_api_compat-0.1.26-py3-none-any.whl (25.5 kB view details)

Uploaded Python 3

File details

Details for the file dataframe_api_compat-0.1.26.tar.gz.

File metadata

  • Download URL: dataframe_api_compat-0.1.26.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dataframe_api_compat-0.1.26.tar.gz
Algorithm Hash digest
SHA256 3b5de1ad930a9b5d504918f5969dff7678beda45a0edf6e24cb46b1aecd46363
MD5 514233709408db76479d129f8830a15c
BLAKE2b-256 7d61756c73d034a4d8f145277f3b9cdece4f6da39b1c80eb9303d76953c15a1b

See more details on using hashes here.

File details

Details for the file dataframe_api_compat-0.1.26-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframe_api_compat-0.1.26-py3-none-any.whl
Algorithm Hash digest
SHA256 46594a5611bd79f5cb6883896ee4640cdbf1b3afb2db5e1208d71effea8e4f29
MD5 00874c7dc5ee888e8a971d3e3f8002b7
BLAKE2b-256 344400a7abd285185d24d99de42ae6224a81ce41ae18ccc78a94cea1e9af76b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page