Skip to main content

Implementation of the DataFrame Standard for pandas and Polars

Project description

Build Status Coverage pre-commit.ci status

DataFrame API Compat

standard-compliant DataFrame

Implementation of the DataFrame Standard for pandas and polars.

What's this?

Please read our blog post! https://data-apis.org/blog/dataframe_standard_rfc/.

Documentation

Please check https://data-apis.org/dataframe-api/draft/API_specification/index.html for the methods supported by the Consortium Dataframe Standard.

How to try this out

Here's an example of how you can try this out:

import polars as pl

df = pl.DataFrame({'a': [1,2,3]})
df_std = df.__dataframe_consortium_standard__()

The object df_std is a Standard-compliant DataFrame. Check the API Specification for the full list of methods supported on it.

Here's an example of a dataframe-agnostic function:

from typing import Any


def my_dataframe_agnostic_function(df_non_standard: Any) -> Any:
    df = df_non_standard.__dataframe_consortium_standard__()

    for column_name in df.column_names:
        new_column = df.col(column_name)
        new_column = (new_column - new_column.mean()) / new_column.std()
        df = df.assign(new_column.rename(f'{column_name}_scaled'))

    return df.dataframe

As long as you have this package installed, then either a pandas or Polars DataFrame should work with the code above, e.g.:

import pandas as pd
import polars as pl

df_pd = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6]})
df_pl = pl.DataFrame({'a': [1,2,3], 'b': [4,5,6]})

my_dataframe_agnostic_function(df_pd)
my_dataframe_agnostic_function(df_pl)

Compliance with the Standard

The classes here also have an extra .persist method, which is not (yet) part of the Standard.

Installation

pip install dataframe-api-compat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframe_api_compat-0.1.30.tar.gz (39.5 kB view details)

Uploaded Source

Built Distribution

dataframe_api_compat-0.1.30-py3-none-any.whl (27.4 kB view details)

Uploaded Python 3

File details

Details for the file dataframe_api_compat-0.1.30.tar.gz.

File metadata

  • Download URL: dataframe_api_compat-0.1.30.tar.gz
  • Upload date:
  • Size: 39.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dataframe_api_compat-0.1.30.tar.gz
Algorithm Hash digest
SHA256 90dae6a2e49017de516cfb9435fc15e5943b048c5235f261ea7ff34d38374773
MD5 09c8992636da34d04894a854d16a44f1
BLAKE2b-256 71a0b8501e5fa8b6c7f30e1f82dc8add3ff43367aafc8a0bdca2f185175308c7

See more details on using hashes here.

Provenance

File details

Details for the file dataframe_api_compat-0.1.30-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframe_api_compat-0.1.30-py3-none-any.whl
Algorithm Hash digest
SHA256 147399fb8ea5f0ae59e78a78c8d8acb72126c48d7441026becd10bfa4630cbef
MD5 78bfcbb0f97a99249203b62e7e580851
BLAKE2b-256 58352e162c57b7212651f4f3c83228b60eab638ad6b09abc188a483bd1ffbc19

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page