Skip to main content

Haystack custom components for your favourite dataframe library.

Project description

Dataframes Haystack

PyPI - Version PyPI - Python Version PyPI - License

Code style: black Ruff

GH Actions Tests pre-commit.ci status


📃 Description

dataframes-haystack is an extension for Haystack 2 that enables integration with dataframe libraries.

The dataframe libraries currently supported are:

The library offers various custom Converters components to transform dataframes into Haystack Document objects:

  • DataFrameFileToDocument is a main generic converter that reads files using a dataframe backend and converts them into Document objects.
  • FileToPandasDataFrame and FileToPolarsDataFrame read files and convert them into dataframes.
  • PandasDataFrameConverter or PolarsDataFrameConverter convert data stored in dataframes into Haystack Documentobjects.

dataframes-haystack supports reading files in various formats:

  • csv, json, parquet, excel, html, xml, orc, pickle, fixed-width format for pandas. See the pandas documentation for more details.
  • csv, json, parquet, excel, avro, delta, ipc for polars. See the polars documentation for more details.

🛠️ Installation

# for pandas (pandas is already included in `haystack-ai`)
pip install dataframes-haystack

# for polars
pip install "dataframes-haystack[polars]"

💻 Usage

[!TIP] See the Example Notebooks for complete examples.

DataFrameFileToDocument

Complete example

You can leverage both pandas and polars backends (thanks to narwhals) to read your data!

from dataframes_haystack.components.converters import DataFrameFileToDocument

converter = DataFrameFileToDocument(content_column="text_str")
documents = converter.run(files=["file1.csv", "file2.csv"])
>>> documents
{'documents': [
    Document(id=0, content: 'Hello world', meta: {}),
    Document(id=1, content: 'Hello everyone', meta: {})
]}

Pandas

Complete example

FileToPandasDataFrame

from dataframes_haystack.components.converters.pandas import FileToPandasDataFrame

converter = FileToPandasDataFrame(file_format="csv")

output_dataframe = converter.run(
    file_paths=["data/doc1.csv", "data/doc2.csv"]
)

Result:

>>> output_dataframe
{'dataframe': <pandas.DataFrame>}

PandasDataFrameConverter

import pandas as pd

from dataframes_haystack.components.converters.pandas import PandasDataFrameConverter

df = pd.DataFrame({
    "text": ["Hello world", "Hello everyone"],
    "filename": ["doc1.txt", "doc2.txt"],
})

converter = PandasDataFrameConverter(content_column="text", meta_columns=["filename"])
documents = converter.run(df)

Result:

>>> documents
{'documents': [
    Document(id=0, content: 'Hello world', meta: {'filename': 'doc1.txt'}),
    Document(id=1, content: 'Hello everyone', meta: {'filename': 'doc2.txt'})
]}

Polars

Complete example

FileToPolarsDataFrame

from dataframes_haystack.components.converters.polars import FileToPolarsDataFrame

converter = FileToPolarsDataFrame(file_format="csv")

output_dataframe = converter.run(
    file_paths=["data/doc1.csv", "data/doc2.csv"]
)

Result:

>>> output_dataframe
{'dataframe': <polars.DataFrame>}

PolarsDataFrameConverter

import polars as pl

from dataframes_haystack.components.converters.polars import PolarsDataFrameConverter

df = pl.DataFrame({
    "text": ["Hello world", "Hello everyone"],
    "filename": ["doc1.txt", "doc2.txt"],
})

converter = PolarsDataFrameConverter(content_column="text", meta_columns=["filename"])
documents = converter.run(df)

Result:

>>> documents
{'documents': [
    Document(id=0, content: 'Hello world', meta: {'filename': 'doc1.txt'}),
    Document(id=1, content: 'Hello everyone', meta: {'filename': 'doc2.txt'})
]}

🤝 Contributing

Do you have an idea for a new feature? Did you find a bug that needs fixing?

Feel free to open an issue or submit a PR!

Setup development environment

Requirements: hatch, pre-commit

  1. Clone the repository
  2. Run hatch shell to create and activate a virtual environment
  3. Run pre-commit install to install the pre-commit hooks. This will force the linting and formatting checks.

Run tests

  • Linting and formatting checks: hatch run lint:fmt
  • Unit tests: hatch run test-cov-all

✍️ License

dataframes-haystack is distributed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataframes_haystack-0.0.4.tar.gz (163.3 kB view details)

Uploaded Source

Built Distribution

dataframes_haystack-0.0.4-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file dataframes_haystack-0.0.4.tar.gz.

File metadata

  • Download URL: dataframes_haystack-0.0.4.tar.gz
  • Upload date:
  • Size: 163.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dataframes_haystack-0.0.4.tar.gz
Algorithm Hash digest
SHA256 c7a4b95507eb0836a7279d8c11002092ee8efbb247d6de1ba17d172052fb38f3
MD5 beb8ee592edd1a533c21def9a89dc101
BLAKE2b-256 eb03546fd5f508554c1529eac8ea9ca73a06431ea919a07859e31f1d6ce28de3

See more details on using hashes here.

File details

Details for the file dataframes_haystack-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for dataframes_haystack-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 e1b29cc09e9a165608ab4d98e33dd595f71c51799df5394eddffc412f309beba
MD5 b263080ed239a69e938cece0a9dbced5
BLAKE2b-256 9dd668ebf746f93fa9e99e3ba30879a612d3319e4e806cc41075ffd21d09ef8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page