Skip to main content

Utilities to work with Data Packages as defined on dataprotocols.org

Project description

# DataPackage.py

[![Gitter](https://img.shields.io/gitter/room/frictionlessdata/chat.svg)](https://gitter.im/frictionlessdata/chat)
[![Build Status](https://travis-ci.org/frictionlessdata/datapackage-py.svg?branch=master)](https://travis-ci.org/frictionlessdata/datapackage-py)
[![Windows Build Status](https://ci.appveyor.com/api/projects/status/github/frictionlessdata/datapackage-py?branch=master&svg=true)](https://ci.appveyor.com/project/vitorbaptista/datapackage-py)
[![Test Coverage](https://coveralls.io/repos/frictionlessdata/datapackage-py/badge.svg?branch=master&service=github)](https://coveralls.io/github/frictionlessdata/datapackage-py)
![Support Python versions 2.7, 3.3, 3.4 and 3.5](https://img.shields.io/badge/python-2.7%2C%203.3%2C%203.4%2C%203.5-blue.svg)

A model for working with [Data Packages].

[Data Packages]: http://dataprotocols.org/data-packages/

## Install

```
pip install datapackage
```

## Examples


### Reading a Data Package and its resource

```python
import datapackage

dp = datapackage.DataPackage('http://data.okfn.org/data/core/gdp/datapackage.json')
brazil_gdp = [{'Year': int(row['Year']), 'Value': float(row['Value'])}
for row in dp.resources[0].data if row['Country Code'] == 'BRA']

max_gdp = max(brazil_gdp, key=lambda x: x['Value'])
min_gdp = min(brazil_gdp, key=lambda x: x['Value'])
percentual_increase = max_gdp['Value'] / min_gdp['Value']

msg = (
'The highest Brazilian GDP occured in {max_gdp_year}, when it peaked at US$ '
'{max_gdp:1,.0f}. This was {percentual_increase:1,.2f}% more than its '
'minimum GDP in {min_gdp_year}.'
).format(max_gdp_year=max_gdp['Year'],
max_gdp=max_gdp['Value'],
percentual_increase=percentual_increase,
min_gdp_year=min_gdp['Year'])

print(msg)
# The highest Brazilian GDP occured in 2011, when it peaked at US$ 2,615,189,973,181. This was 172.44% more than its minimum GDP in 1960.
```

### Validating a Data Package

```python
import datapackage

dp = datapackage.DataPackage('http://data.okfn.org/data/core/gdp/datapackage.json')
try:
dp.validate()
except datapackage.exceptions.ValidationError as e:
# Handle the ValidationError
pass
```

### Retrieving all validation errors from a Data Package

```python
import datapackage

# This descriptor has two errors:
# * It has no "name", which is required;
# * Its resource has no "data", "path" or "url".
descriptor = {
'resources': [
{},
]
}

dp = datapackage.DataPackage(descriptor)

for error in dp.iter_errors():
# Handle error
```

### Creating a Data Package

```python
import datapackage

dp = datapackage.DataPackage()
dp.descriptor['name'] = 'my_sleep_duration'
dp.descriptor['resources'] = [
{'name': 'data'}
]

resource = dp.resources[0]
resource.descriptor['data'] = [
7, 8, 5, 6, 9, 7, 8
]

with open('datapackage.json', 'w') as f:
f.write(dp.to_json())
# {"name": "my_sleep_duration", "resources": [{"data": [7, 8, 5, 6, 9, 7, 8], "name": "data"}]}
```

### Using a schema that's not in the local cache

```python
import datapackage
import datapackage.registry

# This constant points to the official registry URL
# You can use any URL or path that points to a registry CSV
registry_url = datapackage.registry.Registry.DEFAULT_REGISTRY_URL
registry = datapackage.registry.Registry(registry_url)

descriptor = {} # The datapackage.json file
schema = registry.get('tabular') # Change to your schema ID

dp = datapackage.DataPackage(descriptor, schema)
```

### Push/pull Data Package to storage

Package provides `push_datapackage` and `pull_datapackage` utilities to
push and pull to/from storage.

This functionality requires `jsontableschema` storage plugin installed. See
[plugins](#https://github.com/frictionlessdata/jsontableschema-py#plugins)
section of `jsontableschema` docs for more information. Let's imagine
we have installed `jsontableschema-mystorage` (not a real name) plugin.

Then we could push and pull datapackage to/from the storage:

> All parameters should be used as keyword arguments.

```python
from datapackage import push_datapackage, pull_datapackage

# Push
push_datapackage(
descriptor='descriptor_path',
backend='mystorage', **<mystorage_options>)

# Import
pull_datapackage(
descriptor='descriptor_path', name='datapackage_name',
backend='mystorage', **<mystorage_options>)
```

Options could be a SQLAlchemy engine or a BigQuery project and dataset name etc.
Detailed description you could find in a concrete plugin documentation.

See concrete examples in
[plugins](#https://github.com/frictionlessdata/jsontableschema-py#plugins)
section of `jsontableschema` docs.

## Developer notes

These notes are intended to help people that want to contribute to this
package itself. If you just want to use it, you can safely ignore them.

### Updating the local schemas cache

We cache the schemas from <https://github.com/dataprotocols/schemas>
using git-subtree. To update it, use:

git subtree pull --prefix datapackage/schemas https://github.com/dataprotocols/schemas.git master --squash

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datapackage-0.8.5.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

datapackage-0.8.5-py2.py3-none-any.whl (28.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file datapackage-0.8.5.tar.gz.

File metadata

  • Download URL: datapackage-0.8.5.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for datapackage-0.8.5.tar.gz
Algorithm Hash digest
SHA256 ba26e1322fa01f9c3ccba263ca7fe9804c9ba1c24e4f5a02d01c24d41d348ee6
MD5 099cff8cd45ff1472611053f6ade505e
BLAKE2b-256 0ea32c1a4b8c47c0e9a70d0f646c5bbb382a399e55337ff711377a1a38a18938

See more details on using hashes here.

Provenance

File details

Details for the file datapackage-0.8.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for datapackage-0.8.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 488dcc572be3ff9445b1f6d1c1198e7227427fc5f70cdda9e32d20520badd33d
MD5 ebec51e3282e4200b700f5bd4dec4c29
BLAKE2b-256 9b15a70aa6d22bdf9a5a41efecf6757269ca4f2aac167ef89393c112e33c9336

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page