Skip to main content

Utilities to work with Data Packages as defined on dataprotocols.org

Project description

# DataPackage.py

[![Gitter](https://img.shields.io/gitter/room/frictionlessdata/chat.svg)](https://gitter.im/frictionlessdata/chat)
[![Build Status](https://travis-ci.org/frictionlessdata/datapackage-py.svg?branch=master)](https://travis-ci.org/frictionlessdata/datapackage-py)
[![Windows Build Status](https://ci.appveyor.com/api/projects/status/github/frictionlessdata/datapackage-py?branch=master&svg=true)](https://ci.appveyor.com/project/vitorbaptista/datapackage-py)
[![Test Coverage](https://coveralls.io/repos/frictionlessdata/datapackage-py/badge.svg?branch=master&service=github)](https://coveralls.io/github/frictionlessdata/datapackage-py)
![Support Python versions 2.7, 3.3, 3.4 and 3.5](https://img.shields.io/badge/python-2.7%2C%203.3%2C%203.4%2C%203.5-blue.svg)

A model for working with [Data Packages].

[Data Packages]: http://dataprotocols.org/data-packages/

## Install

```
pip install datapackage
```

## Examples


### Reading a Data Package and its resource

```python
import datapackage

dp = datapackage.DataPackage('http://data.okfn.org/data/core/gdp/datapackage.json')
brazil_gdp = [{'Year': int(row['Year']), 'Value': float(row['Value'])}
for row in dp.resources[0].data if row['Country Code'] == 'BRA']

max_gdp = max(brazil_gdp, key=lambda x: x['Value'])
min_gdp = min(brazil_gdp, key=lambda x: x['Value'])
percentual_increase = max_gdp['Value'] / min_gdp['Value']

msg = (
'The highest Brazilian GDP occured in {max_gdp_year}, when it peaked at US$ '
'{max_gdp:1,.0f}. This was {percentual_increase:1,.2f}% more than its '
'minimum GDP in {min_gdp_year}.'
).format(max_gdp_year=max_gdp['Year'],
max_gdp=max_gdp['Value'],
percentual_increase=percentual_increase,
min_gdp_year=min_gdp['Year'])

print(msg)
# The highest Brazilian GDP occured in 2011, when it peaked at US$ 2,615,189,973,181. This was 172.44% more than its minimum GDP in 1960.
```

### Validating a Data Package

```python
import datapackage

dp = datapackage.DataPackage('http://data.okfn.org/data/core/gdp/datapackage.json')
try:
dp.validate()
except datapackage.exceptions.ValidationError as e:
# Handle the ValidationError
pass
```

### Retrieving all validation errors from a Data Package

```python
import datapackage

# This descriptor has two errors:
# * It has no "name", which is required;
# * Its resource has no "data", "path" or "url".
descriptor = {
'resources': [
{},
]
}

dp = datapackage.DataPackage(descriptor)

for error in dp.iter_errors():
# Handle error
```

### Creating a Data Package

```python
import datapackage

dp = datapackage.DataPackage()
dp.descriptor['name'] = 'my_sleep_duration'
dp.descriptor['resources'] = [
{'name': 'data'}
]

resource = dp.resources[0]
resource.descriptor['data'] = [
7, 8, 5, 6, 9, 7, 8
]

with open('datapackage.json', 'w') as f:
f.write(dp.to_json())
# {"name": "my_sleep_duration", "resources": [{"data": [7, 8, 5, 6, 9, 7, 8], "name": "data"}]}
```

### Using a schema that's not in the local cache

```python
import datapackage
import datapackage.registry

# This constant points to the official registry URL
# You can use any URL or path that points to a registry CSV
registry_url = datapackage.registry.Registry.DEFAULT_REGISTRY_URL
registry = datapackage.registry.Registry(registry_url)

descriptor = {} # The datapackage.json file
schema = registry.get('tabular') # Change to your schema ID

dp = datapackage.DataPackage(descriptor, schema)
```

### Push/pull Data Package to storage

Package provides `push_datapackage` and `pull_datapackage` utilities to
push and pull to/from storage.

This functionality requires `jsontableschema` storage plugin installed. See
[plugins](#https://github.com/frictionlessdata/jsontableschema-py#plugins)
section of `jsontableschema` docs for more information. Let's imagine
we have installed `jsontableschema-mystorage` (not a real name) plugin.

Then we could push and pull datapackage to/from the storage:

> All parameters should be used as keyword arguments.

```python
from datapackage import push_datapackage, pull_datapackage

# Push
push_datapackage(
descriptor='descriptor_path',
backend='mystorage', **<mystorage_options>)

# Import
pull_datapackage(
descriptor='descriptor_path', name='datapackage_name',
backend='mystorage', **<mystorage_options>)
```

Options could be a SQLAlchemy engine or a BigQuery project and dataset name etc.
Detailed description you could find in a concrete plugin documentation.

See concrete examples in
[plugins](#https://github.com/frictionlessdata/jsontableschema-py#plugins)
section of `jsontableschema` docs.

## Developer notes

These notes are intended to help people that want to contribute to this
package itself. If you just want to use it, you can safely ignore them.

### Updating the local schemas cache

We cache the schemas from <https://github.com/dataprotocols/schemas>
using git-subtree. To update it, use:

git subtree pull --prefix datapackage/schemas https://github.com/dataprotocols/schemas.git master --squash

Project details


Release history Release notifications | RSS feed

This version

0.8.7

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datapackage-0.8.7.tar.gz (19.2 kB view details)

Uploaded Source

Built Distribution

datapackage-0.8.7-py2.py3-none-any.whl (28.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file datapackage-0.8.7.tar.gz.

File metadata

  • Download URL: datapackage-0.8.7.tar.gz
  • Upload date:
  • Size: 19.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for datapackage-0.8.7.tar.gz
Algorithm Hash digest
SHA256 070b49d50c87b396abb0e0624970a13ddec735ec0fdb11cdf24fa887eafd71f4
MD5 a9e4d2c247630e14684682c742539dd2
BLAKE2b-256 8119f71ba0e7b55e61758f90d532d00da13a649c3cacebfeee92624816707ccf

See more details on using hashes here.

Provenance

File details

Details for the file datapackage-0.8.7-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for datapackage-0.8.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0bc9b796e6f8dcccc9291ed7686c92d31edb2eb848f99d0c7ca232e12d7546a2
MD5 6cc8a35845a6b9290bcc02dfad00202e
BLAKE2b-256 b558d0047e4e36e88d7f4499df587318f5a1049555f8402de053a659e95add1d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page