Skip to main content

Utilities to work with Data Packages as defined on specs.frictionlessdata.io

Project description

# DataPackage.py

[![Gitter](https://img.shields.io/gitter/room/frictionlessdata/chat.svg)](https://gitter.im/frictionlessdata/chat)
[![Build Status](https://travis-ci.org/frictionlessdata/datapackage-py.svg?branch=master)](https://travis-ci.org/frictionlessdata/datapackage-py)
[![Windows Build Status](https://ci.appveyor.com/api/projects/status/github/frictionlessdata/datapackage-py?branch=master&svg=true)](https://ci.appveyor.com/project/vitorbaptista/datapackage-py)
[![Test Coverage](https://coveralls.io/repos/frictionlessdata/datapackage-py/badge.svg?branch=master&service=github)](https://coveralls.io/github/frictionlessdata/datapackage-py)
![Support Python versions 2.7, 3.3, 3.4 and 3.5](https://img.shields.io/badge/python-2.7%2C%203.3%2C%203.4%2C%203.5-blue.svg)

A model for working with [Data Packages].

[Data Packages]: http://specs.frictionlessdata.io/data-package/

## Install

```
pip install datapackage
```

## Examples


### Reading a Data Package and its resource

```python
import datapackage

dp = datapackage.DataPackage('http://data.okfn.org/data/core/gdp/datapackage.json')
brazil_gdp = [{'Year': int(row['Year']), 'Value': float(row['Value'])}
for row in dp.resources[0].data if row['Country Code'] == 'BRA']

max_gdp = max(brazil_gdp, key=lambda x: x['Value'])
min_gdp = min(brazil_gdp, key=lambda x: x['Value'])
percentual_increase = max_gdp['Value'] / min_gdp['Value']

msg = (
'The highest Brazilian GDP occured in {max_gdp_year}, when it peaked at US$ '
'{max_gdp:1,.0f}. This was {percentual_increase:1,.2f}% more than its '
'minimum GDP in {min_gdp_year}.'
).format(max_gdp_year=max_gdp['Year'],
max_gdp=max_gdp['Value'],
percentual_increase=percentual_increase,
min_gdp_year=min_gdp['Year'])

print(msg)
# The highest Brazilian GDP occured in 2011, when it peaked at US$ 2,615,189,973,181. This was 172.44% more than its minimum GDP in 1960.
```

### Validating a Data Package

```python
import datapackage

dp = datapackage.DataPackage('http://data.okfn.org/data/core/gdp/datapackage.json')
try:
dp.validate()
except datapackage.exceptions.ValidationError as e:
# Handle the ValidationError
pass
```

### Retrieving all validation errors from a Data Package

```python
import datapackage

# This descriptor has two errors:
# * It has no "name", which is required;
# * Its resource has no "data", "path" or "url".
descriptor = {
'resources': [
{},
]
}

dp = datapackage.DataPackage(descriptor)

for error in dp.iter_errors():
# Handle error
```

### Creating a Data Package

```python
import datapackage

dp = datapackage.DataPackage()
dp.descriptor['name'] = 'my_sleep_duration'
dp.descriptor['resources'] = [
{'name': 'data'}
]

resource = dp.resources[0]
resource.descriptor['data'] = [
7, 8, 5, 6, 9, 7, 8
]

with open('datapackage.json', 'w') as f:
f.write(dp.to_json())
# {"name": "my_sleep_duration", "resources": [{"data": [7, 8, 5, 6, 9, 7, 8], "name": "data"}]}
```

### Using a schema that's not in the local cache

```python
import datapackage
import datapackage.registry

# This constant points to the official registry URL
# You can use any URL or path that points to a registry CSV
registry_url = datapackage.registry.Registry.DEFAULT_REGISTRY_URL
registry = datapackage.registry.Registry(registry_url)

descriptor = {} # The datapackage.json file
schema = registry.get('tabular') # Change to your schema ID

dp = datapackage.DataPackage(descriptor, schema)
```

### Push/pull Data Package to storage

Package provides `push_datapackage` and `pull_datapackage` utilities to
push and pull to/from storage.

This functionality requires `jsontableschema` storage plugin installed. See
[plugins](#https://github.com/frictionlessdata/jsontableschema-py#plugins)
section of `jsontableschema` docs for more information. Let's imagine
we have installed `jsontableschema-mystorage` (not a real name) plugin.

Then we could push and pull datapackage to/from the storage:

> All parameters should be used as keyword arguments.

```python
from datapackage import push_datapackage, pull_datapackage

# Push
push_datapackage(
descriptor='descriptor_path',
backend='mystorage', **<mystorage_options>)

# Import
pull_datapackage(
descriptor='descriptor_path', name='datapackage_name',
backend='mystorage', **<mystorage_options>)
```

Options could be a SQLAlchemy engine or a BigQuery project and dataset name etc.
Detailed description you could find in a concrete plugin documentation.

See concrete examples in
[plugins](#https://github.com/frictionlessdata/jsontableschema-py#plugins)
section of `jsontableschema` docs.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datapackage-1.0.0a2.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

datapackage-1.0.0a2-py2.py3-none-any.whl (20.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file datapackage-1.0.0a2.tar.gz.

File metadata

File hashes

Hashes for datapackage-1.0.0a2.tar.gz
Algorithm Hash digest
SHA256 3a4d65939e469903f4a3f56057093a5a1425e42daad6981376729a32f8aad57a
MD5 1ca27e56d8421bc981aee81637068db1
BLAKE2b-256 45bdb8df377dc0638080867844e56a31b79403218dbbab5aad153e9700991f91

See more details on using hashes here.

Provenance

File details

Details for the file datapackage-1.0.0a2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for datapackage-1.0.0a2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 486747d08e1758472dc114d8bbb08c736f4179bb926c839f0ae30aee5164c564
MD5 5ffacdab00edf9207e90bb599af0ec84
BLAKE2b-256 f8ee696b48261228cbcdf32ed7f7306e41a08b52591cc2a26c6747fc6393a998

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page