Skip to main content

A language to describe particle decays, and tools to work with them.

Project description

DecayLanguage logo

DecayLanguage: describe, manipulate and convert particle decays

Scikit-HEP PyPI Package latest release Conda latest release Supported versions DOI

CI Azure Build Status Coverage Status Tests Status Documentation Status

Binder demo

DecayLanguage implements a language to describe and convert particle decays between digital representations, effectively making it possible to interoperate several fitting programs. Particular interest is given to programs dedicated to amplitude analyses.

DecayLanguage provides tools to parse so-called .dec decay files, and describe, manipulate and visualize decay chains.

Installation

Just run the following:

pip install decaylanguage

You can use a virtual environment through pipenv or with --user if you know what those are. Python 2.7 and 3.4+ are supported.

Dependencies: (click to expand)

Required and compatibility dependencies will be automatically installed by pip.

Required dependencies:

  • particle: PDG particle data and identification codes
  • Numpy: The numerical library for Python
  • pandas: Tabular data in Python
  • attrs: DataClasses for Python
  • plumbum: Command line tools
  • lark-parser: A modern parsing library for Python

Python compatibility:

Recommended dependencies:

  • graphviz to render (DOT language) graph descriptions of decay chains.
  • pydot, a Python interface to Graphviz's Dot language, used to visualize particle decay chains.

Getting started

The Binder demo is an excellent way to get started with DecayLanguage.

This is a quick user guide. For a full API docs, go here (note that it is presently work-in-progress).

What is DecayLanguage?

DecayLanguage is a set of tools for building and transforming particle decays:

  1. It provides tools to parse so-called .dec decay files, and describe, manipulate and visualize the resulting decay chains.

  2. It implements a language to describe and convert particle decays between digital representations, effectively making it possible to interoperate several fitting programs. Particular interest is given to programs dedicated to amplitude analyses.

Particles

Particles are a key component when dealing with decays. Refer to the particle package for how to deal with particles and Monte Carlo particle identification codes.

Parse decay files

Decay .dec files can be parsed simply with

from decaylanguage import DecFileParser

parser = DecFileParser('my-decay-file.dec')
parser.parse()

# Inspect what decays are defined
parser.list_decay_mother_names()

# Print decay modes, etc. ...

A copy of the master DECAY.DEC file used by the LHCb experiment is provided here for convenience.

The DecFileParser class implements a series of methods giving access to all information stored in decay files: the decays themselves, particle name aliases, definitions of charge-conjugate particles, variable and Pythia-specific definitions, etc.

It can be handy to parse from a multi-line string rather than a file:

s = """Decay pi0
0.988228297   gamma   gamma                   PHSP;
0.011738247   e+      e-      gamma           PI0_DALITZ;
0.000033392   e+      e+      e-      e-      PHSP;
0.000000065   e+      e-                      PHSP;
Enddecay
"""

dfp = DecFileParser.from_string(s)
dfp.parse()

Advanced usage

The list of .dec file decay models known to the package can be inspected via

from decaylanguage.dec import known_decay_models

Say you have to deal with a decay file containing a new model not yet on the list above. Running the parser as usual will result in a UnexpectedToken exception. It is nevertheless easy to deal with this issue; no need to wait for a new release. It is just a matter of adding the model name to the list in decaylanguage/data/decfile.lark (or your private copy), see the line MODEL_NAME.2 : "BaryonPCR"|"BTO3PI_CP"|"BTOSLLALI"|..., and then proceed as usual apart from adding an extra line to call to load_grammar to specify the Lark grammar to use:

dfp = DecFileParser('my_decfile.dec')
dfp.load_grammar('path/to/my_updated_decfile.lark')
dfp.parse()
...

This being said, please do submit a pull request to add new models, if you spot missing ones ...

Visualize decay files

The class DecayChainViewer allows the visualization of parsed decay chains:

from decaylanguage import DecayChainViewer

# Build the (dictionary-like) D*+ decay chain representation setting the D+ and D0 mesons to stable,
# to avoid too cluttered an image
d = dfp.build_decay_chains('D*+', stable_particles=['D+', 'D0'])
DecayChainViewer(d)  # works in a notebook

DecayChain D*

The actual graph is available as

# ...
dcv = DecayChainViewer(d)
dcv.graph

making all pydot.Dot class properties and methods available, such as

dcv.graph.write_pdf('mygraph.pdf')

In the same way, all pydot.Dot class attributes are settable upon instantiation of DecayChainViewer:

dcv = DecayChainViewer(chain, graph_name='TEST', rankdir='TB')

Universal representation of decay chains

A series of classes and methods have been designed to provide universal representations of particle decay chains of any complexity, and to provide the ability to convert between these representations. Specifically, class- and dictionary-based representations have been implemented.

An example of a class-based representation of a decay chain is the following:

>>> from decaylanguage import DaughtersDict, DecayMode, DecayChain
>>>
>>> dm1 = DecayMode(0.0124, 'K_S0 pi0', model='PHSP')
>>> dm2 = DecayMode(0.692, 'pi+ pi-')
>>> dm3 = DecayMode(0.98823, 'gamma gamma')
>>> dc = DecayChain('D0', {'D0':dm1, 'K_S0':dm2, 'pi0':dm3})
>>> dc
<DecayChain: D0 -> K_S0 pi0 (2 sub-decays), BF=0.0124>

Decay chains can be visualised with the DecayChainViewer class making use of the dictionary representation dc.to_dict(), which is the simple representation understood by DecayChainViewer, as see above:

DecayChainViewer(dc.to_dict())

The fact that 2 representations of particle decay chains are provided ensures the following:

  1. Human-readable (class) and computer-efficient (dictionary) alternatives.
  2. Flexibility for parsing, manipulation and storage of decay chain information.

Decay modeling

The most common way to create a decay chain is to read in an AmpGen style syntax from a file or a string. You can use:

from decaylanguage.modeling import AmplitudeChain
lines, parameters, constants, states = AmplitudeChain.read_ampgen(text='''
EventType D0 K- pi+ pi+ pi-

D0[D]{K*(892)bar0{K-,pi+},rho(770)0{pi+,pi-}}                            0 1 0.1 0 1 0.1

K(1460)bar-_mass  0 1460 1
K(1460)bar-_width 0  250 1

a(1)(1260)+::Spline::Min 0.18412
a(1)(1260)+::Spline::Max 1.86869
a(1)(1260)+::Spline::N 34
''')

Here, lines will be a list of AmplitudeChain lines (pretty print supported in Jupyter notebooks), parameters will be a table of parameters (ranged parameters not yet supported), constants will be a table of constants, and states will be the list of known states (EventType).

Converters

You can output to a format (currently only GooFit supported, feel free to make a PR to add more). Use a subclass of DecayChain, in this case, GooFitChain. To use the GooFit output, type from the shell:

python -m decaylanguage -G goofit myinput.opts

Acknowledgements

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1450377 (DIANA/HEP) and OAC-1836650 (IRIS-HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DecayLanguage-0.10.2.tar.gz (779.4 kB view details)

Uploaded Source

Built Distribution

DecayLanguage-0.10.2-py2.py3-none-any.whl (213.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file DecayLanguage-0.10.2.tar.gz.

File metadata

  • Download URL: DecayLanguage-0.10.2.tar.gz
  • Upload date:
  • Size: 779.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for DecayLanguage-0.10.2.tar.gz
Algorithm Hash digest
SHA256 dc953708965879bfc2c8bf4130a02d9c926e3445885fc38438714f3aae6d45ef
MD5 66fc07b8c75ba41b4a4ccf704bcf5022
BLAKE2b-256 c918c1b4fb3b783a31a2fc83aa9e91074bdccddc895132a6db1320402126f0af

See more details on using hashes here.

File details

Details for the file DecayLanguage-0.10.2-py2.py3-none-any.whl.

File metadata

  • Download URL: DecayLanguage-0.10.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 213.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for DecayLanguage-0.10.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 fc984c82838d251a4945b0cdbd3fa99cf71ef481027495ac969940016e485a83
MD5 2247189acb10a4cbac6519705e7b77c8
BLAKE2b-256 b8b463f0ade61139508e16d6c50311ad21636d72831ea6ab1da8cbe06e519ae9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page