Skip to main content

Skew detection and correction in images containing text

Project description

Deskew

Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in the opposite direction. This results in a horizontally and vertically aligned image where the text runs across the page rather than at an angle.

The return angle is between -45 and 45 degrees to don't arbitrary change the image orientation.

By using the library you can set the argument angle_pm_90 to True to have an angle between -90 and 90 degrees.

Skew detection and correction in images containing text

Image with skew Image after deskew
Image with skew Image after deskew

Cli usage

Get the skew angle:

deskew input.png

Deskew an image:

deskew --output output.png input.png

Lib usage

With scikit-image:

import numpy as np
from skimage import io
from skimage.color import rgb2gray
from skimage.transform import rotate

from deskew import determine_skew

image = io.imread('input.png')
grayscale = rgb2gray(image)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, resize=True) * 255
io.imsave('output.png', rotated.astype(np.uint8))

With OpenCV:

import math
from typing import Tuple, Union

import cv2
import numpy as np

from deskew import determine_skew


def rotate(
        image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
) -> np.ndarray:
    old_width, old_height = image.shape[:2]
    angle_radian = math.radians(angle)
    width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
    height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    rot_mat[1, 2] += (width - old_width) / 2
    rot_mat[0, 2] += (height - old_height) / 2
    return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

image = cv2.imread('input.png')
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, (0, 0, 0))
cv2.imwrite('output.png', rotated)

Debug images

If you get wrong skew angle you can generate debug images, that can help you to tune the skewing detection.

If you install deskew with pip install deskew[debug_images] you can get some debug images used for the skew detection with the function determine_skew_debug_images.

To start the investigation you should first increase the num_peaks (default 20) and use the determine_skew_debug_images function.

Then you can try to tune the following arguments num_peaks, angle_pm_90, min_angle, max_angle, min_deviation and eventually sigma.

Inspired by Alyn: https://github.com/kakul/Alyn

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deskew-1.4.2.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

deskew-1.4.2-py3-none-any.whl (7.6 kB view details)

Uploaded Python 3

File details

Details for the file deskew-1.4.2.tar.gz.

File metadata

  • Download URL: deskew-1.4.2.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for deskew-1.4.2.tar.gz
Algorithm Hash digest
SHA256 294bdafc7b1b929f84d5469044a29746d06d35ee22e424e513c7d5799cafb809
MD5 114985d1aee3480b919f1a01dddf1b29
BLAKE2b-256 31e5cba11583c16aa934aa4f644029d539b69a7235309540eedc9fca41c32f0e

See more details on using hashes here.

Provenance

File details

Details for the file deskew-1.4.2-py3-none-any.whl.

File metadata

  • Download URL: deskew-1.4.2-py3-none-any.whl
  • Upload date:
  • Size: 7.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for deskew-1.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 90ac1d12e0fffd3b92900ed013f64060a5f5cf9c9791cec49d707701ac3caa37
MD5 47cc68ade0b4f823bd61b3c57204dadd
BLAKE2b-256 b55bfa924a7df307687ccc2f8533397f112b71ef374421a88fd4fdba86eced0a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page