Skip to main content

Light-sheet Dataset EXploration and Processing

Project description

fishcolorproj

dexp | Light-sheet Dataset EXploration and Processing

dexp is a napari, CuPy, Zarr, and DASK based library for managing, processing and visualizing light-sheet microscopy datasets. It consists in light-sheet specialised image processing functions (equalisation, denoising, dehazing, registration, fusion, stabilization, deskewing, deconvolution), visualization functions (napari-based viewing, 2D/3D rendering, video compositing and resizing, mp4 generation), as well as dataset management functions (copy, crop, concatenation, tiff conversion). Almost all functions are GPU accelerated via CuPy but also have a numpy-based fallback option for testing on small datasets. In addition to a functional API, DEXP offers a command line interface that makes it very easy for non-coders to pipeline large processing jobs all the way from a large multi-terabyte raw dataset to fully processed and rendered video in MP4 format.

How to install dexp

Prerequisites:

dexp works on OSX and Windows, but it is recomended to use the latest version of Ubuntu. We recommend a machine with a top-of-the-line NVIDIA graphics card (min 12G to be confortable).

First, make sure to have a working python installation Second, make sure to have a compatible and functional CUDA installation

Once these prerequisites are satified, you can install dexp.

Installation:

dexp can simply be installed with:

To installs dexp with GPU support (CUDA 11.2), colored console output, and napari support do:

pip install dexp[color, cuda112, napari]

Other available CUDA versions (from CuPy) are: cuda111, cuda110, cuda102, cuda101, cuda100.

If instead you do not wish to add CUDA support, you can instead do:

pip install dexp

For OSX users: Before installating dexp, you will first need to install cairo:

brew install cairo

Quick one-line environment setup and installation:

The following line will delete any existing dexp environment, recreate it, and install dexp with support for CUDA 11.2:

conda deactivate; conda env remove --name dexp; conda create -y --name dexp python=3.8; conda activate dexp; pip install dexp[color,cuda112, napari]

Leveraging extra CUDA libraries for faster processing:

If you want you dexp CUDA-based processing to be even faster, you can install additional libraries such as CUDNN and CUTENSOR with the following command:

install cudalibs 11.2

Change the CUDA version accordingly...

How to use dexp ?

First you need a dataset aqquired on a light-sheet microscope, see here for supported microscopes and formats.

Second, you can use any of the commands here to process your data. The list of commands can be found by :

dexp --help

Example usage

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dexp-2021.4.9.1156.tar.gz (180.1 kB view details)

Uploaded Source

Built Distribution

dexp-2021.4.9.1156-py2.py3-none-any.whl (339.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dexp-2021.4.9.1156.tar.gz.

File metadata

  • Download URL: dexp-2021.4.9.1156.tar.gz
  • Upload date:
  • Size: 180.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5

File hashes

Hashes for dexp-2021.4.9.1156.tar.gz
Algorithm Hash digest
SHA256 c70586d4354cdeb032fdd2492bfb35e537394080ecc41db12cae66e78c29e597
MD5 2a5fc476b4d725cbcf8168669926f477
BLAKE2b-256 a06adfcb377432a609621f0ceab59cf51abbad07eaf3bfb422d80e892caa7605

See more details on using hashes here.

File details

Details for the file dexp-2021.4.9.1156-py2.py3-none-any.whl.

File metadata

  • Download URL: dexp-2021.4.9.1156-py2.py3-none-any.whl
  • Upload date:
  • Size: 339.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5

File hashes

Hashes for dexp-2021.4.9.1156-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 994895bbe4a02b06904e0b0a02b34dc7f72d657cf8eb6912e678b843aab38c91
MD5 d5d0a8e5c763dedde9a969feb7205141
BLAKE2b-256 36a2cfb8b5ef1eefe4af93d483e6fd80d7cdc49758ef3d97c0666ad13ed2783a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page