No project description provided
Project description
DFFML Models For scikit / sklearn
About
Models created using scikit.
Install
python3.7 -m pip install --user dffml-model-scikit
Usage
- Linear Regression Model
For implementing linear regression to a dataset, let us take a simple example:
Years of Experience | Expertise | Trust Factor | Salary |
---|---|---|---|
0 | 01 | 0.2 | 10 |
1 | 03 | 0.4 | 20 |
2 | 05 | 0.6 | 30 |
3 | 07 | 0.8 | 40 |
4 | 09 | 1.0 | 50 |
5 | 11 | 1.2 | 60 |
$ cat > train.csv << EOF
Years,Expertise,Trust,Salary
0,1,0.2,10
1,3,0.4,20
2,5,0.6,30
3,7,0.8,40
EOF
$ cat > test.csv << EOF
Years,Expertise,Trust,Salary
4,9,1.0,50
5,11,1.2,60
EOF
$ dffml train \
-model scikitlr \
-model-features def:Years:int:1 def:Expertise:int:1 def:Trust:float:1 \
-model-predict Salary \
-sources f=csv \
-source-filename train.csv \
-source-readonly \
-log debug
$ dffml accuracy \
-model scikitlr \
-model-features def:Years:int:1 def:Expertise:int:1 def:Trust:float:1 \
-model-predict Salary \
-sources f=csv \
-source-filename test.csv \
-source-readonly \
-log debug
$ echo -e 'Years,Expertise,Trust\n6,13,1.4\n' | \
dffml predict all \
-model scikitlr \
-model-features def:Years:int:1 def:Expertise:int:1 def:Trust:float:1 \
-model-predict Salary \
-sources f=csv \
-source-filename /dev/stdin \
-source-readonly \
-log debug
License
Scikit Models are distributed under the terms of the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dffml-model-scikit-0.0.4.tar.gz
(11.6 kB
view details)
File details
Details for the file dffml-model-scikit-0.0.4.tar.gz
.
File metadata
- Download URL: dffml-model-scikit-0.0.4.tar.gz
- Upload date:
- Size: 11.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efb2622abbbdb555fb2cfe33d303e99eef371658941d90387e57cd74b7e8c723 |
|
MD5 | e6a53090b29404a5e8affa85a62fd135 |
|
BLAKE2b-256 | 84cbbb50bdb67644d1d6152633241bbc1a495b7b2907b5ef1ddba13aa1327cb6 |