No project description provided
Project description
DFFML Models For scikit / sklearn
About
Models created using scikit.
Install
python3.7 -m pip install --user dffml-model-scikit
Usage
- Linear Regression Model
For implementing linear regression to a dataset, let us take a simple example:
Years of Experience | Expertise | Trust Factor | Salary |
---|---|---|---|
0 | 01 | 0.2 | 10 |
1 | 03 | 0.4 | 20 |
2 | 05 | 0.6 | 30 |
3 | 07 | 0.8 | 40 |
4 | 09 | 1.0 | 50 |
5 | 11 | 1.2 | 60 |
$ cat > train.csv << EOF
Years,Expertise,Trust,Salary
0,1,0.2,10
1,3,0.4,20
2,5,0.6,30
3,7,0.8,40
EOF
$ cat > test.csv << EOF
Years,Expertise,Trust,Salary
4,9,1.0,50
5,11,1.2,60
EOF
$ dffml train \
-model scikitlr \
-model-features Years:int:1 Expertise:int:1 Trust:float:1 \
-model-predict Salary \
-sources f=csv \
-source-filename train.csv \
-source-readonly \
-log debug
$ dffml accuracy \
-model scikitlr \
-model-features Years:int:1 Expertise:int:1 Trust:float:1 \
-model-predict Salary \
-sources f=csv \
-source-filename test.csv \
-source-readonly \
-log debug
$ echo -e 'Years,Expertise,Trust\n6,13,1.4\n' | \
dffml predict all \
-model scikitlr \
-model-features Years:int:1 Expertise:int:1 Trust:float:1 \
-model-predict Salary \
-sources f=csv \
-source-filename /dev/stdin \
-source-readonly \
-log debug
License
Scikit Models are distributed under the terms of the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dffml-model-scikit-0.0.5.tar.gz
(15.7 kB
view details)
File details
Details for the file dffml-model-scikit-0.0.5.tar.gz
.
File metadata
- Download URL: dffml-model-scikit-0.0.5.tar.gz
- Upload date:
- Size: 15.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 532ec1d5475a350c64b4e7a764ba01689a3f1063a07e73439d2e291a0e8574ae |
|
MD5 | 17ba43c730c64f6b3941c6c9ac1968af |
|
BLAKE2b-256 | e9b4012c329b9fa07e79c68abe17200ffc7106502348fe69205f4ad97687cfd2 |