Skip to main content

dfindexeddb is an experimental Python tool for performing digital forensic analysis of IndexedDB and leveldb files.

Project description

dfIndexeddb

dfindexeddb is an experimental Python tool for performing digital forensic analysis of IndexedDB and LevelDB files.

It parses LevelDB, IndexedDB and JavaScript structures from these files without requiring native libraries. (Note: only a subset of IndexedDB key types and JavaScript types for Safari and Chromium-based browsers are currently supported. Firefox is under development).

The content of IndexedDB files is dependent on what a web application stores locally/offline using the web browser's IndexedDB API. Examples of content might include:

  • text from a text/source-code editor application,
  • emails and contact information from an e-mail application,
  • images and metadata from a photo gallery application

Installation

  1. [Linux] Install the snappy compression development package
    $ sudo apt install libsnappy-dev
  1. Create a virtual environment and install the package
    $ python3 -m venv .venv
    $ source .venv/bin/activate
    $ pip install dfindexeddb

Installation from source

  1. [Linux] Install the snappy compression development package
    $ sudo apt install libsnappy-dev
  1. Clone or download/unzip the repository to your local machine.

  2. Create a virtual environment and install the package

    $ python3 -m venv .venv
    $ source .venv/bin/activate
    $ pip install .

Usage

Two CLI tools for parsing IndexedDB/LevelDB files are available after installation:

IndexedDB

$ dfindexeddb -h
usage: dfindexeddb [-h] {db,ldb,log} ...

A cli tool for parsing indexeddb files

positional arguments:
  {db,ldb,log}
    db          Parse a directory as indexeddb.
    ldb         Parse a ldb file as indexeddb.
    log         Parse a log file as indexeddb.

options:
  -h, --help    show this help message and exit

Examples:

To parse IndexedDB records from an sqlite file for Safari and output the results as JSON-L, use the following command:

dfindexeddb db -s SOURCE --format safari -o jsonl

To parse IndexedDB records from a LevelDB folder for Chrome/Chromium, using the manifest file to determine recovered records and output as JSON, use the following command:

dfindexeddb db -s SOURCE --format chrome --use_manifest

To parse IndexedDB records from a LevelDB ldb (.ldb) file and output the results as JSON-L, use the following command:

dfindexeddb ldb -s SOURCE -o jsonl

To parse IndexedDB records from a LevelDB log (.log) file and output the results as the Python printable representation, use the following command:

dfindexeddb log -s SOURCE -o repr

To parse a file as a Chrome/Chromium IndexedDB blink value and output the results as JSON:

dfindexeddb blink -s SOURCE

LevelDB

$ dfleveldb -h
usage: dfleveldb [-h] {db,log,ldb,descriptor} ...

A cli tool for parsing leveldb files

positional arguments:
  {db,log,ldb,descriptor}
    db                  Parse a directory as leveldb.
    log                 Parse a leveldb log file.
    ldb                 Parse a leveldb table (.ldb) file.
    descriptor          Parse a leveldb descriptor (MANIFEST) file.

options:
  -h, --help            show this help message and exit

Examples

To parse records from a LevelDB folder, use the following command:

dfindexeddb db -s SOURCE

To parse blocks / physical records/ write batches / internal key records from a LevelDB log (.log) file, use the following command, specifying the type (block, physical_records, etc) via the -t option. By default, internal key records are parsed:

$ dfleveldb log  -s SOURCE [-t {blocks,physical_records,write_batches,parsed_internal_key}]

To parse blocks / records from a LevelDB table (.ldb) file, use the following command, specifying the type (blocks, records) via the -t option. By default, records are parsed:

$ dfleveldb ldb -s SOURCE [-t {blocks,records}]

To parse version edit records from a Descriptor (MANIFEST) file, use the following command:

$ dfleveldb descriptor -s SOURCE [-o {json,jsonl,repr}] [-t {blocks,physical_records,versionedit} | -v]

options:
  -h, --help            show this help message and exit
  -s SOURCE, --source SOURCE
                        The source leveldb file
  -o {json,jsonl,repr}, --output {json,jsonl,repr}
                        Output format. Default is json
  -t {blocks,physical_records,versionedit}, --structure_type {blocks,physical_records,versionedit}
                        Parses the specified structure. Default is versionedit.
  -v, --version_history
                        Parses the leveldb version history.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dfindexeddb-20240501.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

dfindexeddb-20240501-py3-none-any.whl (67.4 kB view details)

Uploaded Python 3

File details

Details for the file dfindexeddb-20240501.tar.gz.

File metadata

  • Download URL: dfindexeddb-20240501.tar.gz
  • Upload date:
  • Size: 53.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dfindexeddb-20240501.tar.gz
Algorithm Hash digest
SHA256 e257d1b2850b5e0689b7041a264e5791bc6ebce2cd2ecb342f14f1241812e33d
MD5 566b7cdaa9d5f2124f95a8771dec7ee8
BLAKE2b-256 709ea6d9c64560aa5e946f1a5c44177b28c6e18fbd7aa134ab55bd14668c1aa1

See more details on using hashes here.

File details

Details for the file dfindexeddb-20240501-py3-none-any.whl.

File metadata

File hashes

Hashes for dfindexeddb-20240501-py3-none-any.whl
Algorithm Hash digest
SHA256 4278c925084ea2e35c7eac8fea7dad9322be27240e995ef6cca024fb50788c6b
MD5 70cb7a352deb4045fffdd2687627d5a8
BLAKE2b-256 51bec801e1d01324c4743f7d8ca0c79b757161cc3324c858a615c8480515720f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page