Skip to main content

A library for instrumenting Python code at runtime.

Project description

Diagnose

A library for instrumenting Python code at runtime.

Probes

Structured logs and metrics and observability are great, but almost always require you to alter your code, which interrupts the flow when reading code. It also typically requires a build cycle to alter; it's no fun making a ticket, getting review, waiting for a build and deploy, and then doing it all again to back out your temporary additions. This is doubly true when doing research, where you might perform a dozen small experiments to measure your live code.

This library allows you to dynamically add probes at runtime instead. Probes are:

  • reliable: errors will never affect your production code
  • ephemeral: set a "lifespan" (in minutes) for each instrument
  • comprehensive: all references to the target function are instrumented
  • fast: measure most functions with fast local lookups; uses hunter (in Cython) for more invasive internal probes.

Individual probes can be created directly by calling attach_to(target):

>>> from path.to.module import myclass
>>> myclass().add13(arg=5)
18
>>> p = diagnose.probes.attach_to("path.to.module.myclass.add13")
>>> p.instruments["foo"] = diagnose.LogInstrument("foo", "arg")
>>> p.start()
>>> myclass().add13(arg=5)
Probe (foo) = 5
18

Instruments aren't limited to recording devices! Use probes to fire off any kind of event handler. Instruments are free to maintain state themselves, or read it from somewhere else, to control their own behavior or even implement feedback mechanisms. A truly evil instrument could even alter the args/kwargs passed to a function on the fly, or call arbitrary Python code to do any number of crazy things. Consequently, it's up to you to govern what instruments are added to your environment.

Managers

In a running system, we want to add, remove, start, and stop probes and instruments without having to code at an interactive prompt or restart the system; we do this with an InstrumentManager. Start by configuring the global diagnose.manager:

>>> diagnose.manager.instrument_classes = {
    "log": LogInstrument,
    "hist": MyHistogramInstrument,
    "incr": MyIncrementInstrument,
}
>>> diagnose.manager.global_namespace.update({"foo": foo})

Later, you can define instruments:

>>> diagnose.manager.specs["instr-1"] = {
    "target": "myapp.module.file.class.method",
    "instrument": {
        "type": "log",
        "name": "myapp.method",
        "value": "result",
        "event": "return",
        "custom": {},
    },
    "lifespan": 10,
    "lastmodified": datetime.datetime.utcnow(),
    "applied": {},
}

Then call diagnose.manager.apply(), either when you add an instrument, or on a schedule if your store is in MongoDB and the process defining probes is not the target process.

The applied dictionary will be filled with information about which processes have applied the probe, and whether they encountered any errors.

Breakpoints

Breakpoints allow you to perform tests that involve concurrency, or that must trigger specific actions at specific times, by setting specific breakpoints at which the execution must stop waiting for some conditions to happen.

        with Breakpoint(S3Archive, "unarchive") as bp:
            bp.start_thread(object.unarchive)  # Start something in the background that will invoke S3Archive.unarchive
            bp.wait()  # wait for S3Archive.unarchive to start

            # perform what has to be done once S3Archive.unarchive
            # has been started.
            # Note: you can get at the unarchive's stack frame using
            # bp.stackframe

            bp.release()  # let S3Archive.unarchive proceed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

diagnose-3.1.3.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

diagnose-3.1.3-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file diagnose-3.1.3.tar.gz.

File metadata

  • Download URL: diagnose-3.1.3.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.21.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.6.12

File hashes

Hashes for diagnose-3.1.3.tar.gz
Algorithm Hash digest
SHA256 14608f2377b8aba696c2cb5814e4c6293b4936c2b2e1e619775327a98aeadb9d
MD5 3630f69fa13973f983d45d404dd67305
BLAKE2b-256 e6717f2c3e07be525776926b1b1cb173a5586e838055ba76c5fe7bc5e537795d

See more details on using hashes here.

File details

Details for the file diagnose-3.1.3-py3-none-any.whl.

File metadata

  • Download URL: diagnose-3.1.3-py3-none-any.whl
  • Upload date:
  • Size: 18.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.21.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.6.12

File hashes

Hashes for diagnose-3.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c10e230b459c5efcc2008bdd3cd1f103248c8f3e0182c273a6151ebf70b81a1e
MD5 4d5b91843f0bc1e5b377b1f93dfe6564
BLAKE2b-256 dcae07e433ae9f3730f8f7a84c6b19d912ee82b0193beae6993036249ef2d1b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page