Machine learning with dirty categories.
Project description
dirty_cat is a Python module for machine-learning on dirty categorical variables.
Website: https://dirty-cat.github.io/
Installation
Dependencies
dirty_cat requires:
Python (>= 3.5)
NumPy (>= 1.8.2)
SciPy (>= 0.13.3)
scikit-learn
Optional dependency:
python-Levenshtein for faster edit distances (not used for the n-gram distance)
User installation
If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip
pip install -U ...
Citation
If you use this module in a scientific publication, please cite the following: (coming soon :))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dirty_cat-0.0.1a0.tar.gz
(414.9 kB
view details)
File details
Details for the file dirty_cat-0.0.1a0.tar.gz
.
File metadata
- Download URL: dirty_cat-0.0.1a0.tar.gz
- Upload date:
- Size: 414.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16f7c715168a2a76e8335f7d03216c44561b86e38121669ae2748d64bf8b5819 |
|
MD5 | 18cb59dc209ec0e0d4b94328a74e9b1f |
|
BLAKE2b-256 | f4e09dfd7cbe631baa147919baf53562520ad4b6aa6f1efd41f1784a8b496e83 |