Skip to main content

Machine learning with dirty categories.

Project description

dirty_cat is a Python module for machine-learning on dirty categorical variables.

Website: https://dirty-cat.github.io/

Installation

Dependencies

dirty_cat requires:

  • Python (>= 3.5)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

  • scikit-learn

Optional dependency:

  • python-Levenshtein for faster edit distances (not used for the n-gram distance)

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip

pip install -U ...

Citation

If you use this module in a scientific publication, please cite the following: (coming soon :))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dirty_cat-0.0.1a0.tar.gz (414.9 kB view details)

Uploaded Source

File details

Details for the file dirty_cat-0.0.1a0.tar.gz.

File metadata

  • Download URL: dirty_cat-0.0.1a0.tar.gz
  • Upload date:
  • Size: 414.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dirty_cat-0.0.1a0.tar.gz
Algorithm Hash digest
SHA256 16f7c715168a2a76e8335f7d03216c44561b86e38121669ae2748d64bf8b5819
MD5 18cb59dc209ec0e0d4b94328a74e9b1f
BLAKE2b-256 f4e09dfd7cbe631baa147919baf53562520ad4b6aa6f1efd41f1784a8b496e83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page