Skip to main content

Machine learning with dirty categories.

Project description

dirty_cat is a Python module for machine-learning on dirty categorical variables.

Website: https://dirty-cat.github.io/

Installation

Dependencies

dirty_cat requires:

  • Python (>= 3.5)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

  • scikit-learn

Optional dependency:

  • python-Levenshtein for faster edit distances (not used for the n-gram distance)

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip

pip install -U ...

Citation

If you use this module in a scientific publication, please cite the following: (coming soon :))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dirty_cat-0.0.1b1.tar.gz (415.2 kB view details)

Uploaded Source

File details

Details for the file dirty_cat-0.0.1b1.tar.gz.

File metadata

  • Download URL: dirty_cat-0.0.1b1.tar.gz
  • Upload date:
  • Size: 415.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dirty_cat-0.0.1b1.tar.gz
Algorithm Hash digest
SHA256 ce8ecf084e86efd87133610181ad5d079d16d1b9818b6a92b13b09c2cf6ba110
MD5 441c78fbda93f02910b1c8c6e8c25a60
BLAKE2b-256 f1b83832edee0bc0635f845232f32181a55a37d086e08356118bca1bf4577adb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page