Machine learning with dirty categories.
Project description
dirty_cat is a Python module for machine-learning on dirty categorical variables.
Website: https://dirty-cat.github.io/
Installation
Dependencies
dirty_cat requires:
Python (>= 3.5)
NumPy (>= 1.8.2)
SciPy (>= 0.13.3)
scikit-learn
Optional dependency:
python-Levenshtein for faster edit distances (not used for the n-gram distance)
User installation
If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip
pip install -U ...
Citation
If you use this module in a scientific publication, please cite the following: (coming soon :))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dirty_cat-0.0.1b3.tar.gz
(417.0 kB
view details)
File details
Details for the file dirty_cat-0.0.1b3.tar.gz
.
File metadata
- Download URL: dirty_cat-0.0.1b3.tar.gz
- Upload date:
- Size: 417.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c26eb84e31d5b430318ab59044634b3c5737c1b56073fd180fba9b9d8d7fbfe |
|
MD5 | 70ca4b232f863d0cb3a1a2ab6ff2de20 |
|
BLAKE2b-256 | e52a17bc08dc198be8ecbe968200e0cc86701b4765ad6b55ba8412d090997dd3 |