Skip to main content

Machine learning with dirty categories.

Project description

dirty_cat is a Python module for machine-learning on dirty categorical variables.

Website: https://dirty-cat.github.io/

Installation

Dependencies

dirty_cat requires:

  • Python (>= 3.5)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

  • scikit-learn

Optional dependency:

  • python-Levenshtein for faster edit distances (not used for the n-gram distance)

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip

pip install -U ...

Citation

If you use this module in a scientific publication, please cite the following: (coming soon :))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dirty_cat-0.0.1b3.tar.gz (417.0 kB view details)

Uploaded Source

File details

Details for the file dirty_cat-0.0.1b3.tar.gz.

File metadata

  • Download URL: dirty_cat-0.0.1b3.tar.gz
  • Upload date:
  • Size: 417.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dirty_cat-0.0.1b3.tar.gz
Algorithm Hash digest
SHA256 8c26eb84e31d5b430318ab59044634b3c5737c1b56073fd180fba9b9d8d7fbfe
MD5 70ca4b232f863d0cb3a1a2ab6ff2de20
BLAKE2b-256 e52a17bc08dc198be8ecbe968200e0cc86701b4765ad6b55ba8412d090997dd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page