Skip to main content

Machine learning with dirty categories.

Project description

dirty_cat is a Python module for machine-learning on dirty categorical variables.

Website: https://dirty-cat.github.io/

For a detailed description of the problem of encoding dirty categorical data, see Similarity encoding for learning with dirty categorical variables [1].

Installation

Dependencies

dirty_cat requires:

  • Python (>= 3.5)

  • NumPy (>= 1.8.2)

  • SciPy (>= 1.0.1)

  • scikit-learn (>= 0.19.0)

Optional dependency:

  • python-Levenshtein for faster edit distances (not used for the n-gram distance)

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip

pip install -U --user dirty_cat

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dirty_cat-0.0.2.tar.gz (75.5 kB view details)

Uploaded Source

Built Distribution

dirty_cat-0.0.2-py2.py3-none-any.whl (87.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dirty_cat-0.0.2.tar.gz.

File metadata

  • Download URL: dirty_cat-0.0.2.tar.gz
  • Upload date:
  • Size: 75.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for dirty_cat-0.0.2.tar.gz
Algorithm Hash digest
SHA256 f7af2d5749ab6c5b0c1f2064abce806c67d4829a43bbbb7ea13c47e403c0e192
MD5 e0e4a9a40a95a0a089cf224f8aecbf71
BLAKE2b-256 e0e646418a29dbf80d17548190ef68589a6fe31973a42bcef27b1be9618bf3ed

See more details on using hashes here.

File details

Details for the file dirty_cat-0.0.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for dirty_cat-0.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 afb84e6a04722373e8c5d5ea53948a67f164199baf9d0cadaf0187053708b896
MD5 de3707a57a32e6af0cb02ccd2b0145db
BLAKE2b-256 a5565cadefed4741a609df939f966aa0fd8b5e7c44a8b03e5a076b28c2fa243b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page