Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.1.13.tar.gz (201.0 kB view details)

Uploaded Source

Built Distributions

discretize-0.1.13-cp36-cp36m-win_amd64.whl (211.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.1.13-cp27-cp27m-macosx_10_7_x86_64.whl (167.0 kB view details)

Uploaded CPython 2.7m macOS 10.7+ x86-64

File details

Details for the file discretize-0.1.13.tar.gz.

File metadata

  • Download URL: discretize-0.1.13.tar.gz
  • Upload date:
  • Size: 201.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for discretize-0.1.13.tar.gz
Algorithm Hash digest
SHA256 3c012be84cd804710c90fe14ff186d8f3d5c956e9adc1351b79a59ef9c8e5cfb
MD5 b0aea0771083e41eb667e311749cfaad
BLAKE2b-256 0b55db4ac55f6a6c9817d7f0eab4b91dedf1378378c8052442336047c98b838c

See more details on using hashes here.

File details

Details for the file discretize-0.1.13-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.1.13-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 df650af104e1774cb1e4282f1c8bb366f1a1a890b772567d4eb9214106e7b3d3
MD5 67c578e5f82add93646c5c6f3665d18c
BLAKE2b-256 5e7b33f204b5320f90ddb3e41d4d47972e8f46da1d2eb311f3038cb2715e5b1d

See more details on using hashes here.

File details

Details for the file discretize-0.1.13-cp27-cp27m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.1.13-cp27-cp27m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1b924746b62452f61291e4eb42a8cd5e376fd78c31b6a82d05fda4d30a9b48b3
MD5 785a5ccf85d1daf2545df64453eddbae
BLAKE2b-256 4b6ff1b3f31bf46b1292c3a9e839b5333de606a83883e1cfc8093146331e5481

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page