Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.1.14.tar.gz (201.0 kB view details)

Uploaded Source

Built Distributions

discretize-0.1.14-cp36-cp36m-win_amd64.whl (211.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.1.14-cp27-cp27m-macosx_10_7_x86_64.whl (167.1 kB view details)

Uploaded CPython 2.7m macOS 10.7+ x86-64

File details

Details for the file discretize-0.1.14.tar.gz.

File metadata

  • Download URL: discretize-0.1.14.tar.gz
  • Upload date:
  • Size: 201.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for discretize-0.1.14.tar.gz
Algorithm Hash digest
SHA256 d0ca058aa5a10369b528db9d2d6133c8c60abcdf8b519ddb041e55689856f43f
MD5 8b51acbb893f4d10a9066091f45f88c2
BLAKE2b-256 ae0aa1af695afe68b76432ee595a200dd6e94c811da8a3d113ec9ba207d746a3

See more details on using hashes here.

File details

Details for the file discretize-0.1.14-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.1.14-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 718cfb9a87872a745b821c817778000c25cad8ce04fbe5ef437963cb5cdb03da
MD5 424c734011c49272462efd087e5f18d6
BLAKE2b-256 5cc74c07845b779b5094cb10635a63276e1cf8a466c2fe76d6f4cdbbdd58bc6a

See more details on using hashes here.

File details

Details for the file discretize-0.1.14-cp27-cp27m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.1.14-cp27-cp27m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 544d769164111b6a2755760375aa6c0c40cbb66f35ce4a5beca2fe14e2930fb3
MD5 e07b4ee75dd62fa21f25c04025dc017a
BLAKE2b-256 302969b8dbd2cdb4b65806b0bb75a5cd9b81fa75daba1d476e57f081e5b32848

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page