Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.2.1.tar.gz (210.2 kB view details)

Uploaded Source

Built Distributions

discretize-0.2.1-py3.6-win32.egg (275.0 kB view details)

Uploaded Source

discretize-0.2.1-py3.6-linux-x86_64.egg (538.5 kB view details)

Uploaded Source

discretize-0.2.1-py3.5-win32.egg (279.6 kB view details)

Uploaded Source

discretize-0.2.1-py2.7-win32.egg (276.8 kB view details)

Uploaded Source

discretize-0.2.1-py2.7-linux-x86_64.egg (529.6 kB view details)

Uploaded Source

discretize-0.2.1-cp36-cp36m-win32.whl (151.4 kB view details)

Uploaded CPython 3.6m Windows x86

discretize-0.2.1-cp35-cp35m-win32.whl (152.0 kB view details)

Uploaded CPython 3.5m Windows x86

discretize-0.2.1-cp27-cp27m-win32.whl (154.4 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.2.1.tar.gz.

File metadata

  • Download URL: discretize-0.2.1.tar.gz
  • Upload date:
  • Size: 210.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for discretize-0.2.1.tar.gz
Algorithm Hash digest
SHA256 a0a6483d06f5ce4d56dc3f22b7c174818fdfa59cd0f8cbd234d04e758fa20186
MD5 11ee9be81c76c72f3321eb8164424802
BLAKE2b-256 f32c42d0258184ba3a62e2bc3f085d4d2b926e1505971260674fa359468315c4

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-py3.6-win32.egg.

File metadata

File hashes

Hashes for discretize-0.2.1-py3.6-win32.egg
Algorithm Hash digest
SHA256 8b8e8cab2feb9ca9b330661afefb3910f045433c27110787f5b39aacaac77282
MD5 36a0326413d350c32c71cadb6c03c8f0
BLAKE2b-256 effab97bc736f56b0c6a7cfc9a047533d733e8382d992efae990ffaf7cd08872

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-py3.6-linux-x86_64.egg.

File metadata

File hashes

Hashes for discretize-0.2.1-py3.6-linux-x86_64.egg
Algorithm Hash digest
SHA256 2547e9bf6d170216bc6633dd04091112c1028c9d8c15863a83ea5996ac4c08d7
MD5 5ff567d3a3a6291c2ec69842c7857f7f
BLAKE2b-256 c534a3b011554580fc164111486aa8a61965d7ed22d6b85af4aa7e5b5c895437

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-py3.5-win32.egg.

File metadata

File hashes

Hashes for discretize-0.2.1-py3.5-win32.egg
Algorithm Hash digest
SHA256 b92bae6206dc272dad942b9928d906d9f62d2cb03ce6a608f3203abbbfa55868
MD5 cbb5847fffadaa6dbff85d9a8f551efd
BLAKE2b-256 e696892ac867189cfb614dd5cf8b6faf59aff2e0f211c8983a7410c185dbbf36

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-py2.7-win32.egg.

File metadata

File hashes

Hashes for discretize-0.2.1-py2.7-win32.egg
Algorithm Hash digest
SHA256 1de3b755839b40444ca837998218cf7e5a1079ac0813c5668acb1fcb6bad7e56
MD5 be31279b2485f9bb0d388cf26fa761da
BLAKE2b-256 7b44c61d5d8ff7a1fe738ec35b6bfb707c370d526ec4cf5b79653102dc4a3dc3

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-py2.7-linux-x86_64.egg.

File metadata

File hashes

Hashes for discretize-0.2.1-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 0288a1efa4c9fbc6db217b15222c3d8371a1ef1e944c91f1e0dc2bb77e94b063
MD5 252d4f2f7dc658d6aeb720dcb0a8e071
BLAKE2b-256 634ca4d3b23968954fe1b6a1ab127d8dea873a2c17b743e93c9df6aee16621d6

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for discretize-0.2.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 874a2dbc80af358e3c7f6d84cabd969d0af32867bb9c4b390414ccaf3131b882
MD5 04da27d85e95d7e0d905e0e876edd333
BLAKE2b-256 e196d0b1baf8b29be8c8a1bd0cd83342370a059b41383b674b47b358a20aa51e

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for discretize-0.2.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 84d286d78868614482b40ad96397a1cd6e9dd56b4983b478d943d6d7f444797d
MD5 ca1d00ea2d4c71490380b2f1f8a61c33
BLAKE2b-256 3faf7f9ede4e1ea9b043a119719dab804ab838b930dab9fc1dbdf42e87b63d97

See more details on using hashes here.

File details

Details for the file discretize-0.2.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for discretize-0.2.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 b34de2596820a2b6e58078668af8b0d5e5d7786898b5e57f2ecef5973c719f8b
MD5 52272e6120db76e2ad22450ad4bea38b
BLAKE2b-256 c9d4f55a548eed36c94b2309632b4dfdcdbcf65b97c49670cf143594b2ea5333

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page