Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.3.11.tar.gz (553.3 kB view details)

Uploaded Source

Built Distributions

discretize-0.3.11-cp36-cp36m-win_amd64.whl (565.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.3.11-cp36-cp36m-macosx_10_7_x86_64.whl (625.1 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file discretize-0.3.11.tar.gz.

File metadata

  • Download URL: discretize-0.3.11.tar.gz
  • Upload date:
  • Size: 553.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for discretize-0.3.11.tar.gz
Algorithm Hash digest
SHA256 4a44f2a9155920b519d5a00bf62e703536ea4a9921e1a305bd48f8c73346785f
MD5 de0ce53b7cbe5f8a927ca464a1cb7f06
BLAKE2b-256 ba44ff628cf8f59d8f288167475712a0e477d5583f4291bc9247f8b4c1c88274

See more details on using hashes here.

File details

Details for the file discretize-0.3.11-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.3.11-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 565.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for discretize-0.3.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c3bef54786b9c4edcdce65561f387e3a79fcb254df5ac7d8631c17f668bc6a3e
MD5 3f2bdc2617d255c406075f00d2a81967
BLAKE2b-256 3a5c3d99a007b9d77dda6d77385cba11cfa1d1898c358a13f68c73ea809be64e

See more details on using hashes here.

File details

Details for the file discretize-0.3.11-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: discretize-0.3.11-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 625.1 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for discretize-0.3.11-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d724255f01a4033e9d01094bfcecf448c517a6b856bc7931e06869a76bd27943
MD5 4b21cc0157aac5cf881a89d7827f8ccd
BLAKE2b-256 2ac01c9544696a120fc057cb1eeb4118df348259a28cae4ab4c23de6c0024f7a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page