Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.3.2.tar.gz (550.5 kB view details)

Uploaded Source

Built Distributions

discretize-0.3.2-py3.6-linux-x86_64.egg (2.4 MB view details)

Uploaded Source

discretize-0.3.2-py2.7-linux-x86_64.egg (2.3 MB view details)

Uploaded Source

discretize-0.3.2-cp36-cp36m-win_amd64.whl (466.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.3.2-cp36-cp36m-win32.whl (373.6 kB view details)

Uploaded CPython 3.6m Windows x86

discretize-0.3.2-cp35-cp35m-win_amd64.whl (460.7 kB view details)

Uploaded CPython 3.5m Windows x86-64

discretize-0.3.2-cp35-cp35m-win32.whl (368.8 kB view details)

Uploaded CPython 3.5m Windows x86

discretize-0.3.2-cp27-cp27m-win_amd64.whl (501.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.3.2-cp27-cp27m-win32.whl (401.3 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.3.2.tar.gz.

File metadata

  • Download URL: discretize-0.3.2.tar.gz
  • Upload date:
  • Size: 550.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for discretize-0.3.2.tar.gz
Algorithm Hash digest
SHA256 1d7a530364bf380b64654035e02e17836f030d11d68a8daa728084e758518551
MD5 4f86bd3426f5cd0d7405d77c604e6d77
BLAKE2b-256 8b0c5419bb36abfd8ddc45c7a63d553126523ce67074073442f5f0dcb05ff694

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-py3.6-linux-x86_64.egg.

File metadata

File hashes

Hashes for discretize-0.3.2-py3.6-linux-x86_64.egg
Algorithm Hash digest
SHA256 dfc49487192f51cdca47b86d1f6c37dab5ce7bfd652e92e042565aa32968ddc8
MD5 e0057a2a072d418164760ffa23a8f564
BLAKE2b-256 db9b9a22973211f72c95676ec8b89433c82c6469f105f600f3b1669b906f9a90

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-py2.7-linux-x86_64.egg.

File metadata

File hashes

Hashes for discretize-0.3.2-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 5be7841f318d33b14c33964ad956de762cbe7c1b7f426ffd84573271963a0434
MD5 5fb7082e0688db229f495ebb6b09da14
BLAKE2b-256 5172cf2c0254f8eca148d0ad3bb7bb4dfe674bf1d83d49eef2fbb49777a554e2

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.3.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5903b3205ada040c77a1ea0f3b1ce4fceeced817274f1756e476b80e854c2435
MD5 0f20ec075094f6cb036e72739c914d6a
BLAKE2b-256 bbc2fb1e5c320778163e7812e494d95285c3fd274c52fd4262fcf3ec6d610012

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for discretize-0.3.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c86a1c088dee0af1ff17bef280bc1c03dcd5c76bd49cade3ff353d980fa642d6
MD5 ca2a792e61d749134be485fd92886f48
BLAKE2b-256 3e92306fe2119768815fdac16832d4bae20224cb375c21fe5e8f919f20853152

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.3.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 38c51eaed7552beb6cbc510848848bb190d3bc53299929e48b769a54d78753a8
MD5 02187079798e40c41c409e9c71298381
BLAKE2b-256 6a1dc3ca312ceb028e80b9aa002f9e2bcf6aee499e1a5a5663b94a4a1c4599ae

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for discretize-0.3.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0ff8af7c703caad9ec116a778cb441fa8fbb592cacd2f92b895986ff710ef811
MD5 1b1abc539d456a298d63bb8353a74d3b
BLAKE2b-256 86e09c2974ef49e779ba386bcad28783666de729bb3c956b8f32f22cd3795310

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.3.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b76e5422524e3ef3f9e990e76ddd83f3e309589da5642f0b929ea4bf1f2e8ff8
MD5 a8bc0975b90c0d114e391e8ddcd8e494
BLAKE2b-256 40d5075a63157ee7bf09d776db2c39aa803bef774ffbbe89d49a59f0c6b5e941

See more details on using hashes here.

File details

Details for the file discretize-0.3.2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for discretize-0.3.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 72c47412473a75a7dfa74bc732b07071eaf7e4fb057c5c5029847e2f48154751
MD5 dbb9f1ca084d879e22221ecdf1317825
BLAKE2b-256 31a44627d99a9a69909023188bcd292fc4965585a887e0b9741b4870aa2ce5c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page