Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.3.4.tar.gz (544.4 kB view details)

Uploaded Source

Built Distributions

discretize-0.3.4-py3.6-linux-x86_64.egg (2.5 MB view details)

Uploaded Source

discretize-0.3.4-py2.7-linux-x86_64.egg (2.2 MB view details)

Uploaded Source

discretize-0.3.4-cp35-cp35m-win_amd64.whl (465.8 kB view details)

Uploaded CPython 3.5m Windows x86-64

discretize-0.3.4-cp35-cp35m-win32.whl (373.9 kB view details)

Uploaded CPython 3.5m Windows x86

discretize-0.3.4-cp27-cp27m-win_amd64.whl (499.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.3.4-cp27-cp27m-win32.whl (395.9 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.3.4.tar.gz.

File metadata

  • Download URL: discretize-0.3.4.tar.gz
  • Upload date:
  • Size: 544.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.12.4 setuptools/20.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.13

File hashes

Hashes for discretize-0.3.4.tar.gz
Algorithm Hash digest
SHA256 269409a18b24e44a63d7229f4e3c1aacf2f1514adb72283bc08a1bc939dfdca8
MD5 79946af37ed484df3acc2fca9eecf23d
BLAKE2b-256 5921b02369ff06c347566dacd328c62845641aa97c7f61b594c99e63e424dfd0

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.4-py3.6-linux-x86_64.egg.

File metadata

  • Download URL: discretize-0.3.4-py3.6-linux-x86_64.egg
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.5.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for discretize-0.3.4-py3.6-linux-x86_64.egg
Algorithm Hash digest
SHA256 4ba7ad52c8858791675b9717641af14abce6896147a0fd14fd6a3320764ea06d
MD5 3d30395568fbe0866d447f3e78f08870
BLAKE2b-256 7e36874fd098511d2403481843deabe481b06604abc0a4ab56c967162925d073

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.4-py2.7-linux-x86_64.egg.

File metadata

  • Download URL: discretize-0.3.4-py2.7-linux-x86_64.egg
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.12.4 setuptools/20.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.13

File hashes

Hashes for discretize-0.3.4-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 04bec8f86ddc3372b3f790721e7ff7062fc79fe74591613d05ed64aab7ad6a38
MD5 2b568828bc2f98c27319ed1aa79b0167
BLAKE2b-256 b3c5123d9590246c29d6a927b1c004e0acf7c176ff43f35a9804f4fab3457e03

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.4-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.3.4-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 465.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.2

File hashes

Hashes for discretize-0.3.4-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 e6b3dba0062085d00e58486b2ae772961b6addfa1af8a3e5ce6bfb16a29568a5
MD5 75a09cbce88c0a8e32594c038bfa6f42
BLAKE2b-256 2c2202d6e8f88c96c6872ed389e1436cdb5d4a484cd60dae44b49661fca0c642

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.4-cp35-cp35m-win32.whl.

File metadata

  • Download URL: discretize-0.3.4-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 373.9 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.2

File hashes

Hashes for discretize-0.3.4-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 b1861bdac95a0931a00760dc28c7782c4e68345aa39497458c583412b5401b3a
MD5 5a62440cd20f191558b2c9fffc778594
BLAKE2b-256 799169481a37b43b2e3bf6b7add28c69ff76a45470293334a5101ab28b377e37

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.4-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.3.4-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 499.6 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15

File hashes

Hashes for discretize-0.3.4-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 1be9f5e7c51272632c93ba835962c0494923da2e5a2bc28b65bca1f865017bb3
MD5 df1e83d44e66a99ff60733179018c7b0
BLAKE2b-256 cd4fda8d2d0c8dde8af9b59756f98fc42d22b732c808bbcd61b5d4fc5edf6993

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.4-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.3.4-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 395.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15

File hashes

Hashes for discretize-0.3.4-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 e0ea5d86bad88808b6d41cbd31582f4c662c564efbb1614757617500601b5079
MD5 21213463449793c8f80f32cde954cf14
BLAKE2b-256 087d339ab2f312407d0a6db26c67a636df92984920f6e416abf4e09f0d7e098f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page