Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.3.5.tar.gz (549.6 kB view details)

Uploaded Source

Built Distributions

discretize-0.3.5-py3.6-linux-x86_64.egg (2.5 MB view details)

Uploaded Source

discretize-0.3.5-py2.7-linux-x86_64.egg (2.2 MB view details)

Uploaded Source

discretize-0.3.5-cp35-cp35m-win_amd64.whl (471.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

discretize-0.3.5-cp35-cp35m-win32.whl (379.7 kB view details)

Uploaded CPython 3.5m Windows x86

discretize-0.3.5-cp27-cp27m-win_amd64.whl (505.4 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.3.5-cp27-cp27m-win32.whl (401.8 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.3.5.tar.gz.

File metadata

  • Download URL: discretize-0.3.5.tar.gz
  • Upload date:
  • Size: 549.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.12.4 setuptools/20.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.13

File hashes

Hashes for discretize-0.3.5.tar.gz
Algorithm Hash digest
SHA256 8b71a19c39b8a097f3145105190b85d6bd11ee086b7b8e82687909c00a19bfe6
MD5 4723e5b2c88802ae4a7fc89c61043e70
BLAKE2b-256 aadd3d279f6ded75bad12dde452f330e22c97eb5631424ae21be78b81fb1056d

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.5-py3.6-linux-x86_64.egg.

File metadata

  • Download URL: discretize-0.3.5-py3.6-linux-x86_64.egg
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for discretize-0.3.5-py3.6-linux-x86_64.egg
Algorithm Hash digest
SHA256 53839a9a2f532b6937d56b93a5f0953649b95e0fc903c3d4447a09b5ce2a2f9b
MD5 47aa3b16de8139ed11936b979a2190a5
BLAKE2b-256 4500cd77976d8782daf8cbb206fc7602846ea8833e26b0659592f16e6b22ecd0

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.5-py2.7-linux-x86_64.egg.

File metadata

  • Download URL: discretize-0.3.5-py2.7-linux-x86_64.egg
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.12.4 setuptools/20.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.13

File hashes

Hashes for discretize-0.3.5-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 4a709f097e4deb905952befc3fa25f52adcb05d420725c1de456e3674fa7f934
MD5 1aa2f7c034427df0e275b77788a3758f
BLAKE2b-256 fcf928781af38170b2cf825349915dddb72e6c81365d18fac53d733cd2413086

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.5-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.3.5-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 471.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.2

File hashes

Hashes for discretize-0.3.5-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 948370dc1d919d5eb4e880d72b1a75c99efc2cf6f14a50b35971a2fdfb69528f
MD5 4c16fb5d82b0683e0ef17032b79766cc
BLAKE2b-256 f7d4096f4f2bdb432730fcd716ddf8f16c08ac32a9aa809d83db133cd4b394ea

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.5-cp35-cp35m-win32.whl.

File metadata

  • Download URL: discretize-0.3.5-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 379.7 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.2

File hashes

Hashes for discretize-0.3.5-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 8930d583fec19e006ce24c01f0fd2435bee033d613c7e6f30abaf4a7aacb3b4a
MD5 9ae9f7d4ffd8e60e0e694d2e4ab07a27
BLAKE2b-256 ed98a5fd22403daafed845b17f58ea637b48416ef10ca5d23bb23bb7b5be7f5e

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.5-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.3.5-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 505.4 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15

File hashes

Hashes for discretize-0.3.5-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 d29b5575c0dd253dc3a48cefff9fc6e756fad6f78bcb0d04f8aabd03b67c6867
MD5 d4a7471c74fcfb8e944dda58adb1c081
BLAKE2b-256 96318759c13e6bf71f8b1f3cd3aee8dd03645017dcf2658f76ea016fc81906b7

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.5-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.3.5-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 401.8 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15

File hashes

Hashes for discretize-0.3.5-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 62aef7f56c7a75822bdb5ad8938f63eef7204499f0d16d2a86103611b2e6b561
MD5 d99e18c30345ffffdd03a86f577bee57
BLAKE2b-256 8d5d431d752c3bb7d79554bd807b38957e6b5f5282977d92e115558e619f2411

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page