Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.3.6.tar.gz (551.6 kB view details)

Uploaded Source

Built Distributions

discretize-0.3.6-py3.6-linux-x86_64.egg (2.5 MB view details)

Uploaded Source

discretize-0.3.6-py2.7-linux-x86_64.egg (2.2 MB view details)

Uploaded Source

discretize-0.3.6-cp35-cp35m-win_amd64.whl (471.8 kB view details)

Uploaded CPython 3.5m Windows x86-64

File details

Details for the file discretize-0.3.6.tar.gz.

File metadata

  • Download URL: discretize-0.3.6.tar.gz
  • Upload date:
  • Size: 551.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.12.4 setuptools/20.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.13

File hashes

Hashes for discretize-0.3.6.tar.gz
Algorithm Hash digest
SHA256 50675b152f4fbe3ddf1829a4c2b745e640de96e13b1e91f435088a7df57786b3
MD5 dfebc044bb313b4a62ce79d9d8d824c8
BLAKE2b-256 b8f0b2e968ce46f3cbc2fcab9c32cb5b055f265ffe5c309478800379f31e0bdc

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.6-py3.6-linux-x86_64.egg.

File metadata

  • Download URL: discretize-0.3.6-py3.6-linux-x86_64.egg
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for discretize-0.3.6-py3.6-linux-x86_64.egg
Algorithm Hash digest
SHA256 576b70f430cf6271d46db7675b4d5e8afc635f82b7db910cd3b637dda874ea6c
MD5 1ac90cd78074cf30bd77d5a5aa4c10c6
BLAKE2b-256 82782c0cc1f3c77219024b96fc9caae5d561dd35263dbfc14a32b12d4405ec0e

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.6-py2.7-linux-x86_64.egg.

File metadata

  • Download URL: discretize-0.3.6-py2.7-linux-x86_64.egg
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.12.4 setuptools/20.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.13

File hashes

Hashes for discretize-0.3.6-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 19ccc0ee4621be6ba0cdd6571b2c8dba7ee7b8d31d650edf4fbdf1629450ee90
MD5 bc1643041fcf9954354fc0c64f7f5a80
BLAKE2b-256 b89845a7c9bcf6753634bd15457f3122acb00ba00d8d736853f9bd39d33cbbf3

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.6-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.3.6-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 471.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.2

File hashes

Hashes for discretize-0.3.6-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 46f87f5c3a051003d63aac15e8ad717a9d4054bfc959411ab63751ee613bec91
MD5 46ee716426ddfedd72a2650c24f380b2
BLAKE2b-256 6f1a7bf1142660ea17db02dbb40ffd68e724f0d31d3684170e5efe9de3270971

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page