Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.3.9.tar.gz (553.1 kB view details)

Uploaded Source

Built Distribution

discretize-0.3.9-cp36-cp36m-macosx_10_7_x86_64.whl (625.0 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file discretize-0.3.9.tar.gz.

File metadata

  • Download URL: discretize-0.3.9.tar.gz
  • Upload date:
  • Size: 553.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for discretize-0.3.9.tar.gz
Algorithm Hash digest
SHA256 b04032c25dddb973009b7e5750258b00db900ec65bbd787279145ba1059c2cc9
MD5 b71ea86dd38725687aa8ef85f685dcfb
BLAKE2b-256 65b4f0786e5bf3f421b6bf0ddb28eebc54c3ae0dec9f2b9c44294f82a0818c51

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.3.9-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: discretize-0.3.9-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 625.0 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for discretize-0.3.9-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4458c98aab0bec7f9480e78d093d868703eb76133633cb411141d4d7fd2ab879
MD5 5101fb6b104d449da53fabdc23082059
BLAKE2b-256 a9197f98fa4d53b3e321545cabb91101ec3a6539902c935d211c47716d9a1e2d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page