Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.11.tar.gz (587.4 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.11-cp37-cp37m-win_amd64.whl (521.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.11-cp37-cp37m-win32.whl (420.9 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.11-cp36-cp36m-win_amd64.whl (521.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.11-cp36-cp36m-win32.whl (421.0 kB view details)

Uploaded CPython 3.6m Windows x86

File details

Details for the file discretize-0.4.11.tar.gz.

File metadata

  • Download URL: discretize-0.4.11.tar.gz
  • Upload date:
  • Size: 587.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200102 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.7

File hashes

Hashes for discretize-0.4.11.tar.gz
Algorithm Hash digest
SHA256 a91fc5b32f83ade952d6e02f88ca6afb0d0b29a0feebf78c87b44b37ccd79e77
MD5 86066782310719bca885510bf5b916f1
BLAKE2b-256 4d4471afd4d277708ee678689af71409ec4a8ab586949d1ebf6f69b418d9e83f

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.11-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.11-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 521.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.4

File hashes

Hashes for discretize-0.4.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c986ee1bd405a9ab318837e6549c6f0fbf8878777752407dbece62912040afb5
MD5 7d03698f1c55f24d3dfa907b272a1baa
BLAKE2b-256 38d24bec024153f2193b63324c6277ed43a8cdb7719e8a6a24572a712f17806c

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.11-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.11-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 420.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.4

File hashes

Hashes for discretize-0.4.11-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5aa7a62433e3389ee2361e31cecbd98b45d9ff417705af9fb2471aa7252e8731
MD5 31e4e38b2c0c7714ea5082c2ec083d13
BLAKE2b-256 9a49fbb0f05598f20c8485d379d87cba48dade8c7e6a16ac70322b56169b6c37

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.11-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.11-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 521.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.6.5

File hashes

Hashes for discretize-0.4.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1b7cacce0a127371098ce88b3944039e32f2bfc1c87083b7afc4a92b7fe01d51
MD5 f8d00d1d62a56d47df313d75350bb686
BLAKE2b-256 b864d267021340a93ba0d44701246d3246e444374d0a465b22e3d956b2ffae1e

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.11-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.11-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 421.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.6.5

File hashes

Hashes for discretize-0.4.11-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6aef46f945983019488735470cff6b502765ae2a0732655c10561829e1d1cfc2
MD5 6b5a0db9a403132bd8c642c1b8f0aa79
BLAKE2b-256 3cf44ba20332ff16e59d3d18ea10e9f540fd2591e0056ff1be7153f6db319406

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page