Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.12.tar.gz (589.5 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.12-cp37-cp37m-win_amd64.whl (523.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.12-cp37-cp37m-win32.whl (422.2 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.12-cp36-cp36m-win_amd64.whl (523.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.12-cp36-cp36m-win32.whl (422.2 kB view details)

Uploaded CPython 3.6m Windows x86

File details

Details for the file discretize-0.4.12.tar.gz.

File metadata

  • Download URL: discretize-0.4.12.tar.gz
  • Upload date:
  • Size: 589.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.0.0.post20200113 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.1

File hashes

Hashes for discretize-0.4.12.tar.gz
Algorithm Hash digest
SHA256 b90ba8ab32c4009c4b6af1962f27a15bc69d47b4d752eaf71c033be0551d2387
MD5 746c648902cc43f1ecab5820f7f5b034
BLAKE2b-256 e3b1ea2dfef8a5228c9130287592a0361b5091d51e17a4c5fbb60a13fbfaa9bd

See more details on using hashes here.

File details

Details for the file discretize-0.4.12-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.12-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 523.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.4

File hashes

Hashes for discretize-0.4.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e8d13098e78c29b9358a8396e289526591156ea4cdfb5e114a0cf2d63c9888c9
MD5 c20db94a544bef0282b68dd92cfcf7ef
BLAKE2b-256 4ff0ba3a3a543cac94f18210e3a8cbe09f8f1c9acf60d5d964f1479c482ee101

See more details on using hashes here.

File details

Details for the file discretize-0.4.12-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.12-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 422.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.4

File hashes

Hashes for discretize-0.4.12-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 504f25d486cdf527b0baabf8f73e605685f8cad21323ba0571a33642c177309e
MD5 b9741aeadae03c8d96b3479427951b24
BLAKE2b-256 8a92838fa3aa276a444331bcdf3219a246478a0a9fa8e30cdcecb62673dd9b2d

See more details on using hashes here.

File details

Details for the file discretize-0.4.12-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.12-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 523.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.5

File hashes

Hashes for discretize-0.4.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d195ed819f01b80db10dc589c8eb0d4317bc218c654c1a4c0bbcdbbd535058bd
MD5 e8e2887dae6391c7962ed55df5260562
BLAKE2b-256 f4069dabc0a29b6d8e421bda39350fe090ab5226618089cf149be60039336913

See more details on using hashes here.

File details

Details for the file discretize-0.4.12-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.12-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 422.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.5

File hashes

Hashes for discretize-0.4.12-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ab1392c6378d1a4a8688cd3de7cc0fc33a9a8b68ba5af9eabd68818470e31985
MD5 ca1b8f45c424774b631fa329673dd442
BLAKE2b-256 ba48dd36e5f5d53012f342bd81ea27f0c2d3cee3a4251b74b83ed05ae51f72c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page