Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.13.tar.gz (590.0 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.13-cp37-cp37m-win_amd64.whl (476.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.13-cp37-cp37m-win32.whl (403.1 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.13-cp36-cp36m-win_amd64.whl (476.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.13-cp36-cp36m-win32.whl (403.0 kB view details)

Uploaded CPython 3.6m Windows x86

File details

Details for the file discretize-0.4.13.tar.gz.

File metadata

  • Download URL: discretize-0.4.13.tar.gz
  • Upload date:
  • Size: 590.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.0.0.post20200113 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.1

File hashes

Hashes for discretize-0.4.13.tar.gz
Algorithm Hash digest
SHA256 734e1ed460d532601f03af446a5229664606b2269e1b1f7cba646eb19cf4dd0f
MD5 57b041b62e52471162074abfa7649c33
BLAKE2b-256 e164f1e6c26435d32f2868fab8d777a02d9c3807068afa8622c0a11d51bd1bf4

See more details on using hashes here.

File details

Details for the file discretize-0.4.13-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.13-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 476.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for discretize-0.4.13-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9de53787690e4d5ee7a6156c48a02da2a464cf83d9d8d4c137a0ef08d90829e3
MD5 b6299b4fd8bd2f32150dc07119dd50e0
BLAKE2b-256 ce3d33f2c3bb99d277894f16433c2399430a463c8a78440203d358066b6c93ec

See more details on using hashes here.

File details

Details for the file discretize-0.4.13-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.13-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 403.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for discretize-0.4.13-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 45aa7fa64f93f21acdfa4fb73912b5426dfc8c36c3770094bdc5a433723bc71b
MD5 84e08c58287af57b7e12e6ea6812d4f9
BLAKE2b-256 3aed18ba53189899e47d6e8d29a68deb8831f465f13a6734e23b2929823ccc08

See more details on using hashes here.

File details

Details for the file discretize-0.4.13-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.13-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 476.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.13-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 902e2edd97e86a678f3a5705a40cca59dbd1f73fae7e88bcd72673c2d7800eca
MD5 ff0f5bf88c61a1039f879b7ba8d1b039
BLAKE2b-256 889670d1ab5eb1a26d9c329020f44f02c88bd67e5bb6350107c02c6cdfed9be0

See more details on using hashes here.

File details

Details for the file discretize-0.4.13-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.13-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 403.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.13-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 45bd6d37e7afd77fc48ca855463e6eb83d0eedcd874966f6c693a999758f4d34
MD5 78d5c0b2e19808a74371a175562a1078
BLAKE2b-256 c742c366d6708c9d9a9ffbc78cb807f59fd16b80d30340a1c89ebb42a2ab7be4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page