Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.15.tar.gz (576.4 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.15-cp37-cp37m-win_amd64.whl (477.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.15-cp37-cp37m-win32.whl (404.4 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.15-cp36-cp36m-win_amd64.whl (477.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.15-cp36-cp36m-win32.whl (404.3 kB view details)

Uploaded CPython 3.6m Windows x86

File details

Details for the file discretize-0.4.15.tar.gz.

File metadata

  • Download URL: discretize-0.4.15.tar.gz
  • Upload date:
  • Size: 576.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200712 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for discretize-0.4.15.tar.gz
Algorithm Hash digest
SHA256 a33745a0ecffa4f96ea64eb69bab1efc4913f44549ad86c7ba786499c0a17ae6
MD5 030cc8d169518e437e15f67b66047f95
BLAKE2b-256 14185c9cb9cc32c5ba19a8c433c22ec4de76da812b671d19c626627fc166bf12

See more details on using hashes here.

File details

Details for the file discretize-0.4.15-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.15-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 477.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.4

File hashes

Hashes for discretize-0.4.15-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1206c58760e55c0e98edefd33f9500c3043cd2ed628f2bb70d6da2f59aa52e6a
MD5 aad29663527303706dc83dd80ad01c93
BLAKE2b-256 b88d22f651ca405da3398c48e815cf49ab12c11116f4bdc8af414a3302efb3f3

See more details on using hashes here.

File details

Details for the file discretize-0.4.15-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.15-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 404.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.4

File hashes

Hashes for discretize-0.4.15-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2e5232c4580287079fc424aa7b02e98bb472075a6ccb3e740df6e00d524dea8c
MD5 46807606e8f6fbb4bc03a5df958a7476
BLAKE2b-256 c713610b059cfeca6403ea7c0bfee04546ae2b53f2143ec7e8e48cadcc956e6f

See more details on using hashes here.

File details

Details for the file discretize-0.4.15-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.15-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 477.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.5

File hashes

Hashes for discretize-0.4.15-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 05e53b5e8b4f63679ae21b80f2c83419042ad3da1fda4f5902726043c7806421
MD5 e41594cfa70aac8a779d94bb7df7315c
BLAKE2b-256 cb8ff101bf1eb9e1715b35ab6c9bd3ce74e0491547550065dfb8b3a6bc00b979

See more details on using hashes here.

File details

Details for the file discretize-0.4.15-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.15-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 404.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.5

File hashes

Hashes for discretize-0.4.15-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ea04486d7079bacfcd5a427e38947304d768dcdaef66c6fd6a5ca7e5b4bd3f93
MD5 fa8e8dd886333a569a0b62b52c014440
BLAKE2b-256 7c5e527052b03b6466483ad7670990c0e5a435e94a597545160bafe2afcc8800

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page