Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.2.tar.gz (565.6 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.2-cp37-cp37m-win_amd64.whl (506.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.2-cp37-cp37m-win32.whl (406.0 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.2-cp36-cp36m-win_amd64.whl (506.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.2-cp35-cp35m-win_amd64.whl (484.4 kB view details)

Uploaded CPython 3.5m Windows x86-64

discretize-0.4.2-cp35-cp35m-win32.whl (392.4 kB view details)

Uploaded CPython 3.5m Windows x86

discretize-0.4.2-cp27-cp27m-win_amd64.whl (518.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.4.2-cp27-cp27m-win32.whl (412.9 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.4.2.tar.gz.

File metadata

  • Download URL: discretize-0.4.2.tar.gz
  • Upload date:
  • Size: 565.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.2.tar.gz
Algorithm Hash digest
SHA256 6a531fea8664b9a1d3ffce624d62018ff4a0aa146f3869b00e110506829e4433
MD5 3b72f15b699ac24f1fa047a355ebd75d
BLAKE2b-256 fcc2a589e6230f28485412973e697d00f23a1d55783ed59f7068ab8aba4d6ae6

See more details on using hashes here.

File details

Details for the file discretize-0.4.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 506.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 21e898ebcf05b8836b4b16febbad25c7eb99535189680cddf54765fb20c0b5f5
MD5 5bb5acaf10be3a28b76970b3bbfbdb38
BLAKE2b-256 03a488f1f5ec7b9c68c6df09c7e4f516efa720cee32bcdc50818dd9c256c08e5

See more details on using hashes here.

File details

Details for the file discretize-0.4.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 406.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0714ec583277fcc913363bf96233736093c207898d9c77feb404ab6ea77236ab
MD5 5e9ac013efd6824ddb8a6a1c3d74f196
BLAKE2b-256 4784c9cd4cd299a4235c7176b6bb27edae5aefc6bf7234b614ddc953853d8cec

See more details on using hashes here.

File details

Details for the file discretize-0.4.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 506.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 82ea97cf16171c746304c308218024def4073908d832220b07f49d2041cbb1de
MD5 d7c0f6243da08ea570508b9c5f607087
BLAKE2b-256 7a1f61dd2dafe2ea51c077573cba6ab28d65081797d747c746113c006a485a44

See more details on using hashes here.

File details

Details for the file discretize-0.4.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 484.4 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for discretize-0.4.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 bc35dcff720f1942063fb550eafe3bfd03e8565a61dfb865d3f80c1f05f41833
MD5 ae909bec0ec1d8ab69f74ee75891533b
BLAKE2b-256 63eac6566f72e0903d3fa68ca77f6899e1fca4ece6b9aebc0fc14a0c2c6b0906

See more details on using hashes here.

File details

Details for the file discretize-0.4.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: discretize-0.4.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 392.4 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for discretize-0.4.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 1cee8b8e884cabf0ca8f11a050084742ff8f15e06c3d4b7e7206ffebf61f76a8
MD5 07302beaec5afbc880212606cfefa96e
BLAKE2b-256 7e5c20a6c5309737bb8f61a08fad18cbde7e545da01e61938433a715a5ee6fca

See more details on using hashes here.

File details

Details for the file discretize-0.4.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 518.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 13f119a17198c706b0307b8edf4ffa5139bbea036fa88d91606ccdf56218bb98
MD5 e89ccb25da824eaa95f818dbe7d0428a
BLAKE2b-256 1215d80063130d763821bed80fefb20e41ef1057e0500e60622d122382189973

See more details on using hashes here.

File details

Details for the file discretize-0.4.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.4.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 412.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 9c7e5155e1704bb9e9030adc87a53d8239c299f829657030d3688004e02b997f
MD5 2a8fe63dd4059b1eb23e58774e600113
BLAKE2b-256 ad976226a07b695af96d13899d27834ff8330b0618b2082ccb83cecb78d61527

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page