Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.4.tar.gz (567.1 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.4-cp37-cp37m-win_amd64.whl (508.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.4-cp37-cp37m-win32.whl (408.0 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.4-cp36-cp36m-win_amd64.whl (508.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.4-cp36-cp36m-win32.whl (408.1 kB view details)

Uploaded CPython 3.6m Windows x86

discretize-0.4.4-cp27-cp27m-win_amd64.whl (520.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.4.4-cp27-cp27m-win32.whl (414.9 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.4.4.tar.gz.

File metadata

  • Download URL: discretize-0.4.4.tar.gz
  • Upload date:
  • Size: 567.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.4.tar.gz
Algorithm Hash digest
SHA256 51a3049d2c8df1a346111ec739210a7556f8ed8db484b21446a4dab5c8898d9f
MD5 5f303ee47f30e3999003b0bbc8c5a65b
BLAKE2b-256 3ef6cb8b40a503f50c2ca3002cec359b6d29d1eac7bb773e15b752db052f0bce

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 508.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 51e5c868eb13f38ba10d7af86b16ef40d3fcf528c94830216e959769e338de14
MD5 a8ab42992382ef2fdb9484725b1b7b92
BLAKE2b-256 0472407b3c4ef2e86d2180a327684583fc62703e79bd61e52153ead410389a63

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 408.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 289a6b9ce9bb20160cde8afc6eb98370d61aeadd1f2289fcb54f30616ebbaa1a
MD5 3fbc12a603d28c386cfedc5b5cc5a530
BLAKE2b-256 cd828838eb69a3bfe3ee6442367406af26fe2ef14b8c92ccba69c10688a981a5

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 508.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 62e3ea2e4c13b66debb8bf1dedbb189a52a133eb06da80e096961e221889fae7
MD5 360d0b01b7f2a41372b7ae0e55a71318
BLAKE2b-256 b49aca4ff92790de6908c2f7321655e7c5a83bf1bdfddf1fb36b63abdeaf4d1c

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 408.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e16294640e4e596e7f2d586189cbbae68f068bf167fd8cd165cb339fd149eb96
MD5 7791b7751fb04dda7e0f14c7192459ec
BLAKE2b-256 3ea7b19857de897a0a4a34aeba5252cffbc666b721983a6294e8a579f7c48f40

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.4-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.4-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 520.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.4-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 1fe3c41d9b782cf7ede452e97caa557366b89aead3847c977ca4fc3fb9f070e9
MD5 6a705e0d2e905a75f0ba2b386504adcf
BLAKE2b-256 00adfb59dd394c0581e178db7f527ff6c0588529d05de597978fe584981e1c62

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.4-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.4.4-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 414.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.4-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 629674ad9c61b45ad63f37aafefb46f735fb02746ca662e7cc345c326a0d6ae3
MD5 33bd35d5afaf6896842ae8ce26ec7c1a
BLAKE2b-256 fad799cb6cfdc3a7854bc5f12a4f7cd162e3abf4c96e49852488cc1cb2cf3756

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page