Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.6.tar.gz (568.1 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.6-cp37-cp37m-win_amd64.whl (509.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.6-cp37-cp37m-win32.whl (409.0 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.6-cp36-cp36m-win_amd64.whl (509.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.6-cp36-cp36m-win32.whl (409.1 kB view details)

Uploaded CPython 3.6m Windows x86

discretize-0.4.6-cp27-cp27m-win_amd64.whl (521.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.4.6-cp27-cp27m-win32.whl (415.9 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.4.6.tar.gz.

File metadata

  • Download URL: discretize-0.4.6.tar.gz
  • Upload date:
  • Size: 568.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.7

File hashes

Hashes for discretize-0.4.6.tar.gz
Algorithm Hash digest
SHA256 03b997bba9565336dbb3d558efd90f3fa115b2bb537fb9d45f98fdd931056f25
MD5 5cce78da33dc095d2d07b42a2b4f5144
BLAKE2b-256 a05d88459088d5e4df0f757aa2a08b03a4bd675bc8622b5db237c8c7b0007096

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 509.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dd5f657c3ced27584473a02940ff510baced0a2046c0846094f3988e6efacf82
MD5 87920deb86fad5a6268ed889b72e1b9f
BLAKE2b-256 83812d4427814e430834d09d0f527c23fda789fff02c83939039cf4d4a096dff

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 409.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 899a9d6ddabed1cad565f8a9c8dbe930e4955276a8fbb6435cea086e69046381
MD5 bc56217c6382a5c21bc3daf3e3e3ebdd
BLAKE2b-256 97afdd86e140d4e63250a08504552ee73c22af0019f5bbac2e134e387cb2d5a9

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 509.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 818812ccc1858b4b6324e8ee2057b87699b249c0611d416747d6dacdf9fb870f
MD5 1dc1c3d43c8cd7321d7c3d592deddd99
BLAKE2b-256 1d835dab7e80fffbadf6a3bb4bc6c5d68e4d1acdc3f4e47264cb708a8828f6e0

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.6-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.6-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 409.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.6-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b2f3ec2516b08016d97d733ea1208044c860a027623bed236193ed03472d5acb
MD5 5d1fcb965c176aab9afa04463e1fd41d
BLAKE2b-256 1f96f88bc2c9805a4721e4ea08dc43ef35ef63739e3c27d8f0f7edf74eeae89e

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.6-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.6-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 521.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.6-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 287e40c230f73933bfc9c79a4f41aa806dc00e2079a142c6fb7ba840cbc54194
MD5 201310e9f591217ef4938b4cd16694a1
BLAKE2b-256 ff1e21ab8ee7960c3256736db1a93abf53155316eacb4aefde6a4f22fbc76ce1

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.6-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.4.6-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 415.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.6-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 0e37d095d04972d25b9b3c448dc70b6fab0c9daed132f72595e0cabdaddcc569
MD5 8de7167d9f27175108d5f0e834f14e66
BLAKE2b-256 87c1df4868510473e05ee9189db4ba4c10bd791d5b0bafba58f22280eb848d11

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page