Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.7.tar.gz (568.1 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.7-cp37-cp37m-win_amd64.whl (509.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.7-cp37-cp37m-win32.whl (409.0 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.7-cp36-cp36m-win_amd64.whl (509.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.7-cp36-cp36m-win32.whl (409.1 kB view details)

Uploaded CPython 3.6m Windows x86

discretize-0.4.7-cp27-cp27m-win_amd64.whl (521.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.4.7-cp27-cp27m-win32.whl (415.9 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.4.7.tar.gz.

File metadata

  • Download URL: discretize-0.4.7.tar.gz
  • Upload date:
  • Size: 568.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/2.7.15

File hashes

Hashes for discretize-0.4.7.tar.gz
Algorithm Hash digest
SHA256 908f1b14efca49f47c6aef47cae258cc741d3ed6d7bb4a4d7a1d980ea311a2b5
MD5 4bc908c33f8f6d5a61a3c9e37f7ae2e8
BLAKE2b-256 f133efbbc8a59d69f0e36eec09c177669e8102b965b5a3a41219796652540b1a

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 509.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9eaa9c510fe0e4f6549dce3663eecc3e10e0f3938c3c1e80a05b5ee135637dfd
MD5 1bbc2026bd28595db62667e0d3319eb4
BLAKE2b-256 496d71d6726be8313d995f31767efe4f211c8c51e1788825dcdafe42915289e2

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 409.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 80954f1b294c6db1daaf8dbcf757b0ad0605f763729eec4a22f6f0ad53cc369e
MD5 671dffa915192b3feffe882566816f97
BLAKE2b-256 40ddb8edee25befb9d41d2efd6c3b1f859600437fd1055d13fe5b39360f09fbc

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 509.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 89afaba90e6a75b42561fa2619c5b357b1ba4b480a41cba0fc316cfc3069a471
MD5 e4d7fcf30f1b94f7b16e36a122311647
BLAKE2b-256 6127f2bcf5a97e8cf429fc80561de5630e4acfb712c145932b72f362d98d6442

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.7-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.7-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 409.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 bdca954fa0514169b235fffb31af7715bfa22d32cd2040f3e30b4e03c4550d81
MD5 be5214a086e5322dd56fc55f32d38f99
BLAKE2b-256 e557f0ae5b58d6db12dbf4c6c430793c311efc7df0e9d6d0e059e22e5cd68281

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.7-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.7-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 521.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.7-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 c7b5f156fbd12fc75dcf4c90e349ea5f4d253487ada6a79d45e98172e215b10f
MD5 92fbf02727d9203db67e68d6aca716d0
BLAKE2b-256 cdf21b132df4fb8344e62b2e219748ebdc95296a05b3de67309bdc20bc78d3de

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.7-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.4.7-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 415.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.7-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 96149e0e0c2984b3590a3b71573bc5eef99002b60628b7b81dfe2084dfbd3d57
MD5 0e5f5928c9504f21312324e071d942d8
BLAKE2b-256 01ac4dfbc5b4dee206a44984fc59781c4944781ad6b8f0be794f873110b0cc0e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page