Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.9.tar.gz (585.4 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.9-cp37-cp37m-win_amd64.whl (519.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.4.9-cp37-cp37m-win32.whl (418.1 kB view details)

Uploaded CPython 3.7m Windows x86

discretize-0.4.9-cp36-cp36m-win_amd64.whl (519.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.9-cp36-cp36m-win32.whl (418.1 kB view details)

Uploaded CPython 3.6m Windows x86

discretize-0.4.9-cp27-cp27m-win_amd64.whl (531.7 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.4.9-cp27-cp27m-win32.whl (426.9 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.4.9.tar.gz.

File metadata

  • Download URL: discretize-0.4.9.tar.gz
  • Upload date:
  • Size: 585.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/2.7.15

File hashes

Hashes for discretize-0.4.9.tar.gz
Algorithm Hash digest
SHA256 d7fe622947f23398f7738b5c4b256df6c40500503e22a026982a7a06a84c7c78
MD5 d51a2d2d85462d72e62cd2ff2b262e96
BLAKE2b-256 040e6e709f13acf0cfc696cb920d1c6cdb5b0c31cb2ac4c33d091da2bc97d368

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 519.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cf57e0df66b3651f3d5afa402c7209e7f973b5b9dddb38fa697bc76a55f64b38
MD5 c62ac82b34c26f07708fc47e1428754a
BLAKE2b-256 e5c31370074edb22ccc74d23b8403ce382f2de20ec1b62763f52b9fa2f2a74f6

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.9-cp37-cp37m-win32.whl.

File metadata

  • Download URL: discretize-0.4.9-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 418.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for discretize-0.4.9-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d77426471def675898804828e0c9940bea81517de7903a64e6c87e1512a1cf9e
MD5 e1863072bde7446881a299ac39c4df2f
BLAKE2b-256 313c67fd9302dc12d837317069aaef850c7fc9368dd22f159ebf057d5713a495

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.9-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.9-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 519.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 17fe360ce3b4bef3571974587f2e9d56cfbd53816ccc12f79d24fc111e370566
MD5 be67ada7ffb70675b7641a7f36c0eeab
BLAKE2b-256 d69b1a69db26607c5dae2aa807d39cc65460687dd9d544e355882fe379acadb0

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.9-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.9-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 418.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.9-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d9478850590a4ad7bee341a8d0c07ef49fa26017d6119462235089fd1a5229ac
MD5 088c921b2c398f20bd51983c1a734ff8
BLAKE2b-256 fb7cb0b19282058a98f08e79462ed045dc723e1db344164913c229da7e2eca53

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.9-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.9-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 531.7 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.16

File hashes

Hashes for discretize-0.4.9-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 55560140123134c97cf8ae619bf7d3e64de4261b76fa267ed1d809a702f302f2
MD5 e9e74121fc880ef9e2dd73ca479b2b28
BLAKE2b-256 cd7593320b65885396760a327e84e248786390a881315696518b38b4c071dbfd

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.4.9-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.4.9-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 426.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.16

File hashes

Hashes for discretize-0.4.9-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 fe3774e55e3756b633a6f62a125c42b77e88162b8eb10d88d49e5865f89cc083
MD5 9dafd137fb258b1e4cb6f9364f172145
BLAKE2b-256 3046d04f9b9f310932a42ef7369cbe4b58b6d79ad60b186d8d4f0eec7ac3c97a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page