Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Azure pipelines build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.6.0.tar.gz (611.0 kB view details)

Uploaded Source

Built Distributions

discretize-0.6.0-cp38-cp38-win_amd64.whl (532.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

discretize-0.6.0-cp37-cp37m-win_amd64.whl (511.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.6.0-cp36-cp36m-win_amd64.whl (511.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file discretize-0.6.0.tar.gz.

File metadata

  • Download URL: discretize-0.6.0.tar.gz
  • Upload date:
  • Size: 611.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.9.0

File hashes

Hashes for discretize-0.6.0.tar.gz
Algorithm Hash digest
SHA256 1d4622f59c1f5742cb3ae1d9233b1c2bace8e6c3240cb95e4ef8c683763eb33f
MD5 b6e61ab20f5c19a5f0929bdeccf3fa57
BLAKE2b-256 2bdd15f2cac8565b6d87443f2281cf952a3e2c03a89c8ce98062d44ae4859ac5

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 532.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for discretize-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d3c29f9b2b1af839fd1cc602e4327fafd5c7989cb23f4e3efae5c741d377d880
MD5 729c08bbb6688e5a3f31a8e8fe65fe9d
BLAKE2b-256 9d919abd8fc985c5c981cddbd7661ab239afdee5cb345ce282d8b1ecf4159979

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 511.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.7.9

File hashes

Hashes for discretize-0.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a78548ca09664e4b318d66e1b9bca7f1e008094856079129dc3d9916fbe6dfda
MD5 4c3c5c904c7928ba34b9817bd9eb6718
BLAKE2b-256 40bdf2daf99c3f8e962b15866ea6031ea415a577642910b3ac4c45a58b6baddc

See more details on using hashes here.

Provenance

File details

Details for the file discretize-0.6.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 511.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.6.8

File hashes

Hashes for discretize-0.6.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9abd9a08cf63ab2b5e1620f2f1d2212221fb50dd79942dfa873275481d25a8ee
MD5 e76bf8b6a97f8c6ec3e1b052c48452d2
BLAKE2b-256 e33a26c7c3c41731e5197b89fafb931d05a8232d15673c63761af83b6fbf7415

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page