Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Azure pipelines build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.6.1.tar.gz (611.7 kB view details)

Uploaded Source

Built Distributions

discretize-0.6.1-cp38-cp38-win_amd64.whl (532.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

discretize-0.6.1-cp37-cp37m-win_amd64.whl (512.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.6.1-cp36-cp36m-win_amd64.whl (511.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file discretize-0.6.1.tar.gz.

File metadata

  • Download URL: discretize-0.6.1.tar.gz
  • Upload date:
  • Size: 611.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.9.0

File hashes

Hashes for discretize-0.6.1.tar.gz
Algorithm Hash digest
SHA256 379ba5da7042489c005170eb69889cbebd3e705184fc323ce553aededa46e4d5
MD5 9e86a3e75189c53d05a1a442bd0b1770
BLAKE2b-256 facd475bba3796a9a0b3190af663a20ed1a6ed333eda91da91715737f32cd7ec

See more details on using hashes here.

File details

Details for the file discretize-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 532.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for discretize-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1162c2ad8432c7926293f36347ba330d477d1a3a7ba0ca77ce78e792a7fa78e5
MD5 aeea911c3e6385fb50d790fa402fb9be
BLAKE2b-256 e227a0ddf6b491aca0ded9af4814816ca202dbb5ee6dd2fc2bf4389a0c860889

See more details on using hashes here.

File details

Details for the file discretize-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 512.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.7.9

File hashes

Hashes for discretize-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 49bbffa47e5e2da8cec7327062fd1ce74f2a37402ca247f620db0268bfbfeb6f
MD5 73b6442b8d393a28c9e832feba1426e9
BLAKE2b-256 db547ba86e6250ca7aa1033e8cf75171874c25ef4f86436cbc5f906a834896ea

See more details on using hashes here.

File details

Details for the file discretize-0.6.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 511.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.6.8

File hashes

Hashes for discretize-0.6.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ea18b90c018a848325bff2af326fffcdae37cc997cc5279f0aec43144aec73f4
MD5 e85f6f422f35989cc9ba70273245add5
BLAKE2b-256 07af0449282c0d73902f4175ca6961607c665d13ee9e5235af34105d17c9762e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page