Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Azure pipelines build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.6.2.tar.gz (611.7 kB view details)

Uploaded Source

Built Distributions

discretize-0.6.2-cp38-cp38-win_amd64.whl (532.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

discretize-0.6.2-cp37-cp37m-win_amd64.whl (512.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.6.2-cp36-cp36m-win_amd64.whl (511.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file discretize-0.6.2.tar.gz.

File metadata

  • Download URL: discretize-0.6.2.tar.gz
  • Upload date:
  • Size: 611.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.9.0

File hashes

Hashes for discretize-0.6.2.tar.gz
Algorithm Hash digest
SHA256 74d1f2ce2789aaf5187fee16614f80ecc3d77cf4aca4cbf33e0160ca17925c26
MD5 6b1f4053be90328e25061ce05e03951a
BLAKE2b-256 e2c4336b52d6e242e8a06060cfdc3217585a26434dba324bb95231b7c9179061

See more details on using hashes here.

File details

Details for the file discretize-0.6.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 532.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for discretize-0.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cbf76127509cce7ea88e4875b4d81d44c123f7aa66e4c749480a6ad7e4a595ca
MD5 fd3f65224e65202322ca55d1f0db61fc
BLAKE2b-256 f44378a5cf7ef3caec4d8171f24ccee6c94b6356cb878de1fbe4a3825d4314f4

See more details on using hashes here.

File details

Details for the file discretize-0.6.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 512.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.9

File hashes

Hashes for discretize-0.6.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6ba25d9a5b1fb39ebf35d56ca01b891a0e00bb47399c253fe841ba4fa78c3c09
MD5 a34a4b2a90585398acadc35137be3636
BLAKE2b-256 4ba28bd6b25c182f236bc08140d137154811e0487d05a3df0e0c86d70d4382e9

See more details on using hashes here.

File details

Details for the file discretize-0.6.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 511.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.6.8

File hashes

Hashes for discretize-0.6.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 92faa0026d7c6ca1b061299222780fde8475082691840ed2bde556bb1c192c33
MD5 1ba1f5dcd277afd375afcf3d7518a2e4
BLAKE2b-256 8262559f94ddd15b839333c09494daaf64150edaf84ddf254ae1bd5527034b95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page