Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Azure pipelines build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.6.3.tar.gz (679.7 kB view details)

Uploaded Source

Built Distributions

discretize-0.6.3-cp38-cp38-win_amd64.whl (573.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

discretize-0.6.3-cp37-cp37m-win_amd64.whl (548.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.6.3-cp36-cp36m-win_amd64.whl (547.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file discretize-0.6.3.tar.gz.

File metadata

  • Download URL: discretize-0.6.3.tar.gz
  • Upload date:
  • Size: 679.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for discretize-0.6.3.tar.gz
Algorithm Hash digest
SHA256 ad244b58bc910b28ceb9dadf661141c0c2bf2c875cd4e965f9ebeb94cd92b879
MD5 7b8cd01abfa2ccf5e4bdfa7a3c7f3404
BLAKE2b-256 86fa79f9c63fe3b28359e2ad369bcb452e2fd1b687afb5eead8793341602849c

See more details on using hashes here.

File details

Details for the file discretize-0.6.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 573.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.7

File hashes

Hashes for discretize-0.6.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b73786dc2b7643a70c12491524187bc005a139e9c10f2e00adee7d251c05d7b5
MD5 35c7a2e8a00cb716723df8a2ef464cf5
BLAKE2b-256 0c2eb9a7139b19d2b8dfa832b82d7e776b8529eff6b712262a34029e3f9a87ab

See more details on using hashes here.

File details

Details for the file discretize-0.6.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 548.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for discretize-0.6.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0e79fa12997dbbc894e6ffd49f30f5b6267fd81c52da1110d07c8e01ee7a1435
MD5 3b8616f57ffd727cfd1aa5efb2c078d2
BLAKE2b-256 20a12b1df8357881a4d4b66624105643e5b208d983ee8d8be15f298d16fba264

See more details on using hashes here.

File details

Details for the file discretize-0.6.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.6.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 547.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.6.8

File hashes

Hashes for discretize-0.6.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1e5bb49e34cf7ac82c4c272568d1edc17433292505a5b490ea00470d425d80a4
MD5 49b5c5f44315a014a02e67002a0e7156
BLAKE2b-256 2826231998c6660682e02b262d15c81881a0a849468f0ef8b0ad58fdaa2fbee3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page