Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Azure pipelines build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.7.0.tar.gz (704.9 kB view details)

Uploaded Source

Built Distributions

discretize-0.7.0-cp38-cp38-win_amd64.whl (601.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

discretize-0.7.0-cp37-cp37m-win_amd64.whl (575.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

discretize-0.7.0-cp36-cp36m-win_amd64.whl (574.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file discretize-0.7.0.tar.gz.

File metadata

  • Download URL: discretize-0.7.0.tar.gz
  • Upload date:
  • Size: 704.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for discretize-0.7.0.tar.gz
Algorithm Hash digest
SHA256 f8d0c9e3718d535ee72abbfa74f7d18d2234bba016abcecb5c46e2c4a79011f4
MD5 a90ae51463383c2c12f9ad1534f9009d
BLAKE2b-256 64f692c017c0b367a3a8f3ec6f86927f628a38883248718d83a628e788d30e7a

See more details on using hashes here.

File details

Details for the file discretize-0.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: discretize-0.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 601.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for discretize-0.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7701a13305ab70ecf84e99d02ad9d4809271cebea628d3ab47649ac81135d59f
MD5 7513b0eb2035d97949235a9ea571a154
BLAKE2b-256 32ea0aa8cd3834af47f5ee7d6c98827bcb0e9537f0c17f4d78dca496e984c0b1

See more details on using hashes here.

File details

Details for the file discretize-0.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 575.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for discretize-0.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bc517c1d9615c34def465f3103c71ac14161c3485f018eb48d04cb686b6caffb
MD5 520fbddfd5071cc3af7b56a942259591
BLAKE2b-256 2fd64c40d681f117ab50c101dbf010f9b8e16f48f4c858671c864d827ef306b5

See more details on using hashes here.

File details

Details for the file discretize-0.7.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.7.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 574.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.8

File hashes

Hashes for discretize-0.7.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a540b56f5613b03f3283e56807c7401bca98de06103119b3d119313f4eff117e
MD5 675238a73f571a601fd24c9ea498f380
BLAKE2b-256 3768bb947a217c66bb6f05aec95b3d1705893e604560ce17769fb56a7012698e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page