Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Discretize Logo

discretize

Latest PyPI version Latest conda-forge version MIT license Azure pipelines build status Coverage status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.8.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

discretize-0.8.1-cp310-cp310-win_amd64.whl (839.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

discretize-0.8.1-cp39-cp39-win_amd64.whl (893.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

discretize-0.8.1-cp38-cp38-win_amd64.whl (899.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

discretize-0.8.1-cp37-cp37m-win_amd64.whl (876.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

File details

Details for the file discretize-0.8.1.tar.gz.

File metadata

  • Download URL: discretize-0.8.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for discretize-0.8.1.tar.gz
Algorithm Hash digest
SHA256 10dd631a1a02a9783f1a50b80e3d814aaca3cc3364b92a02c45780f27b27f5ad
MD5 1b7776843b89156626695ed47c4e40cd
BLAKE2b-256 20fcbc43c332b4eebaaee710216444b74863c34c319da96527f8f522e6892640

See more details on using hashes here.

File details

Details for the file discretize-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 941ff2e1a10c22c7efda32ba36b72785197a72166498a7545d35a4a48388812c
MD5 315b762c6f2d43d780c3fcbdf9250135
BLAKE2b-256 ae24f250cddd9a7f2d83689f18f0c0e8d6822bda903a75ee4102822702c489c2

See more details on using hashes here.

File details

Details for the file discretize-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: discretize-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 893.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for discretize-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fadd29dcedf4857baef45b91bce1aa9c786b0db8ce9629d5314695848574d910
MD5 d48bbceacc53e6db1a0767782cacfe13
BLAKE2b-256 f9f1f72f1cc8b4ee59ef1d46fe737d9c27d2fd4cf98f50b2da9537611397aae6

See more details on using hashes here.

File details

Details for the file discretize-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: discretize-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 899.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for discretize-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1f065fa788c7c7e39f2c35328ba17b1efe8a504b25a7ce37aeccee13c7ee05ed
MD5 609904d92fcc315df58333c42a1dbecb
BLAKE2b-256 573ccc7bd9692ef647edf7b4dd6a93ea8f81d12bd60dcabe194effe0156d0ac7

See more details on using hashes here.

File details

Details for the file discretize-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e46d246e155462300d2d3cd7e559ff2361b89764c5d026fb233163055263609d
MD5 ac3492661d36c027457f7fa8c62e9387
BLAKE2b-256 b66d29f078dce683c239e57d8863dc21518dfe2a9086bf2ead405fef2e377742

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page